Ordered and Atomically Perfect Fragmentation of Layered Transition Metal Dichalcogenides via Mechanical Instabilities

被引:54
作者
Chen, Ming [1 ]
Xia, Juan [2 ]
Zhou, Jiadong [3 ]
Zeng, Qingsheng [3 ]
Li, Kaiwei [1 ]
Fujisawa, Kazunori [4 ,5 ]
Fu, Wei [3 ]
Zhang, Ting [1 ]
Zhang, Jing [1 ]
Wang, Zhe [1 ]
Wang, Zhixun [1 ]
Jia, Xiaoting [6 ]
Terrones, Mauricio [4 ,5 ]
Shen, Ze Xiang [2 ]
Liu, Zheng [1 ,3 ]
Wei, Lei [1 ]
机构
[1] Nanyang Technol Univ, Sch Elect & Elect Engn, 50 Nanyang Ave, Singapore 639798, Singapore
[2] Nanyang Technol Univ, Sch Phys & Math Sci, Singapore 639798, Singapore
[3] Nanyang Technol Univ, Sch Mat Sci & Engn, Ctr Programmable Mat, 50 Nanyang Ave, Singapore 639798, Singapore
[4] Penn State Univ, Dept Phys, University Pk, PA 16802 USA
[5] Penn State Univ, Ctr Dimens & Layered Mat 2, University Pk, PA 16802 USA
[6] Virginia Polytech Inst & State Univ, Bradley Dept Elect & Comp Engn, Blacksburg, VA 24061 USA
基金
新加坡国家研究基金会;
关键词
advanced nanomaterials; transition metal dichalcogenides (TMDs); controlled fragmentation; mechanical instabilities; necking process; hydrogen evolution reaction; ACTIVE EDGE SITES; MONOLAYER MOS2; ELASTIC PROPERTIES; STRESS TRANSFER; GRAPHENE; EVOLUTION; WS2; NANOPARTICLES; BLENDS;
D O I
10.1021/acsnano.7b04158
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Thermoplastic polymers subjected to a continuous tensile stress experience a state of mechanical instabilities, resulting in neck formation and propagation. The necking process with strong localized strain enables the transformation of initially brittle polymeric materials into robust, flexible, and oriented forms. Here we harness the polymer-based mechanical instabilities to control the fragmentation of atomically thin transition metal dichalcogenides (TMDs). We develop a simple and versatile nanofabrication tool to precisely fragment atom-thin TMDs sandwiched between thermoplastic polymers into ordered and atomically perfect TMD nanoribbons in arbitrary directions regardless of the crystal structures, defect content, and original geometries. This method works for a very broad spectrum of semiconducting TMDs with thicknesses ranging from monolayers to bulk crystals. We also explore the electrical properties of the fabricated monolayer nanoribbon arrays, obtaining an on/off ratio of similar to 10(6) for such MoS2 arrays based field-effect transistors. Furthermore, we demonstrate an improved hydrogen evolution reaction with the resulting monolayer MoS2 nanoribbons, thanks to the largely increased catalytic edge sites formed by this physical fragmentation method. This capability not only enriches the fundamental study of TMD extreme and fragmentation mechanics, but also impacts on future developments of TMD-based devices.
引用
收藏
页码:9191 / 9199
页数:9
相关论文
共 42 条
[11]   IMPRINT OF SUB-25 NM VIAS AND TRENCHES IN POLYMERS [J].
CHOU, SY ;
KRAUSS, PR ;
RENSTROM, PJ .
APPLIED PHYSICS LETTERS, 1995, 67 (21) :3114-3116
[12]   Interfacial Stress Transfer in a Graphene Monolayer Nanocomposite [J].
Gong, Lei ;
Kinloch, Ian A. ;
Young, Robert J. ;
Riaz, Ibtsam ;
Jalil, Rashid ;
Novoselov, Konstantin S. .
ADVANCED MATERIALS, 2010, 22 (24) :2694-+
[13]   Fabrication of Flexible MoS2 Thin-Film Transistor Arrays for Practical Gas-Sensing Applications [J].
He, Qiyuan ;
Zeng, Zhiyuan ;
Yin, Zongyou ;
Li, Hai ;
Wu, Shixin ;
Huang, Xiao ;
Zhang, Hua .
SMALL, 2012, 8 (19) :2994-2999
[14]   Identification of active edge sites for electrochemical H2 evolution from MoS2 nanocatalysts [J].
Jaramillo, Thomas F. ;
Jorgensen, Kristina P. ;
Bonde, Jacob ;
Nielsen, Jane H. ;
Horch, Sebastian ;
Chorkendorff, Ib .
SCIENCE, 2007, 317 (5834) :100-102
[15]   Epitaxial Monolayer MoS2 on Mica with Novel Photoluminescence [J].
Ji, Qingqing ;
Zhang, Yanfeng ;
Gao, Teng ;
Zhang, Yu ;
Ma, Donglin ;
Liu, Mengxi ;
Chen, Yubin ;
Qiao, Xiaofen ;
Tan, Ping-Heng ;
Kan, Min ;
Feng, Ji ;
Sun, Qiang ;
Liu, Zhongfan .
NANO LETTERS, 2013, 13 (08) :3870-3877
[16]   Interfacial Sliding and Buckling of Monolayer Graphene on a Stretchable Substrate [J].
Jiang, Tao ;
Huang, Rui ;
Zhu, Yong .
ADVANCED FUNCTIONAL MATERIALS, 2014, 24 (03) :396-402
[17]   Excitation intensity dependence of photoluminescence from monolayers of MoS2 and WS2/MoS2 heterostructures [J].
Kaplan, D. ;
Gong, Y. ;
Mills, K. ;
Swaminathan, V. ;
Ajayan, P. M. ;
Shirodkar, S. ;
Kaxiras, E. .
2D MATERIALS, 2016, 3 (01)
[18]  
Kibsgaard J, 2012, NAT MATER, V11, P963, DOI [10.1038/NMAT3439, 10.1038/nmat3439]
[19]  
Kinloch AJ, 2013, Fracture behaviour of polymers
[20]   MoS2 Nanoparticles Grown on Graphene: An Advanced Catalyst for the Hydrogen Evolution Reaction [J].
Li, Yanguang ;
Wang, Hailiang ;
Xie, Liming ;
Liang, Yongye ;
Hong, Guosong ;
Dai, Hongjie .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2011, 133 (19) :7296-7299