Investigations on Na-ion conducting electrolyte based on sodium alginate biopolymer for all-solid-state sodium-ion batteries

被引:56
|
作者
Diana, M. Infanta [1 ]
Selvin, P. Christopher [1 ]
Selvasekarapandian, S. [1 ,2 ]
Krishna, M. Vengadesh [2 ]
机构
[1] Bharathiar Univ, Luminescence & Solid State Ion Lab, Dept Phys, Coimbatore 641046, Tamil Nadu, India
[2] Mat Res Ctr, Coimbatore 641045, Tamil Nadu, India
关键词
Sodium thiocyanate; Ion conductivity; Glass transition temperature; Transference number; POLYMER ELECTROLYTES; POLY(VINYL ALCOHOL); GLASS-TRANSITION; HOST MATERIALS; TRANSPORT; MEMBRANES; WATER; TEMPERATURE; THIOCYANATE; PERFORMANCE;
D O I
10.1007/s10008-021-04985-z
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Herein, solid biopolymer electrolyte membranes based on sodium alginate are prepared and investigated for their application in sodium-ion batteries. Various concentrations of sodium thiocyanate (NaSCN) are introduced into the matrix of sodium alginate biopolymer. Solution cast route is the method opted to prepare the electrolyte membrane. The complex formation between sodium alginate and NaSCN has been confirmed with the help of X-ray diffraction (XRD) analysis and Fourier transform infrared spectroscopy (FTIR). On increasing NaSCN concentration, the semi-crystalline nature of the sodium alginate gets abated thus elevating the amorphous domain of the electrolyte membrane. Information about the glass transition temperature (T-g) is acquired from differential scanning calorimetry (DSC). Decrement in the T-g upon NaSCN addition favors the segmental motion of the polymer chain. The biopolymer host material (30 wt%) can accommodate large amounts of NaSCN salt (70 wt%) exhibiting ionic conductivity of 1.22 x 10(-2) S cm(-1). The transference number measurement with Wagner's DC polarization method is found to be 0.96 (near unity) which confirms ions are the governing charge carriers. The linear sweep voltammetry (LSV) technique that measures the potential window for the biopolymer electrolyte membrane is 2.7 V, representing it as a potential applicant for electrochemical energy storage devices. An all-solid-state sodium-ion battery is assembled with a high ion-conducting biopolymer electrolyte membrane that displays an open cell potential of 2.87 V. The results highlight the possibilities of sodium ion-conducting solid biopolymer electrolytes to extend their hands in a safe sodium-ion battery.
引用
收藏
页码:2009 / 2020
页数:12
相关论文
共 50 条
  • [1] Investigations on Na-ion conducting electrolyte based on sodium alginate biopolymer for all-solid-state sodium-ion batteries
    M. Infanta Diana
    P. Christopher Selvin
    S. Selvasekarapandian
    M. Vengadesh Krishna
    Journal of Solid State Electrochemistry, 2021, 25 : 2009 - 2020
  • [2] A physicochemical elucidation of sodium perchlorate incorporated alginate biopolymer: toward all-solid-state sodium-ion battery
    Diana, M. Infanta
    Selvasekarapandian, S.
    Selvin, P. Christopher
    Krishna, M. Vengadesh
    JOURNAL OF MATERIALS SCIENCE, 2022, 57 (17) : 8211 - 8224
  • [3] A Review of Modification Methods of Solid Electrolytes for All-Solid-State Sodium-Ion Batteries
    Dai, Hanqing
    Chen, Yuanyuan
    Xu, Wenqian
    Hu, Zhe
    Gu, Jing
    Wei, Xian
    Xie, Fengxian
    Zhang, Wanlu
    Wei, Wei
    Guo, Ruiqian
    Zhang, Guoqi
    ENERGY TECHNOLOGY, 2021, 9 (01)
  • [4] Chalcogenide Electrolytes for All-Solid-State Sodium Ion Batteries
    Chen, Guanghai
    Bai, Ying
    Gao, Yongsheng
    Wu, Feng
    Wu, Chuan
    ACTA PHYSICO-CHIMICA SINICA, 2020, 36 (05)
  • [5] Comprehensive insights into solid-state electrolytes and electrode-electrolyte interfaces in all-solid-state sodium-ion batteries
    Gao, Xinran
    Xing, Zheng
    Wang, Mingyue
    Nie, Chuanhao
    Shang, Zhichao
    Bai, Zhongchao
    Dou, Shi Xue
    Wang, Nana
    ENERGY STORAGE MATERIALS, 2023, 60
  • [6] NaBH4-Poly(Ethylene Oxide) Composite Electrolyte for All-Solid-State Na-Ion Batteries
    Luo, Xiaoxuan
    Aguey-Zinsou, Kondo-Francois
    BATTERIES-BASEL, 2024, 10 (09):
  • [7] Synergistic nanocomposite polymer electrolytes for advanced all-solid-state sodium-ion batteries
    Kannadasan, Mahalakshmi
    Sathiasivan, Kiruthika
    Pandurangan, Ilakkiya
    Balakrishnan, Muthukumaran
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2024, 78 : 634 - 641
  • [8] Development of sodium-ion conducting biopolymer electrolyte membrane based on Agar-Agar with sodium perchlorate (NaClO4) using ethylene carbonate (EC) as a plasticizer for primary Na-ion battery
    Sowmiya, S.
    Shanthi, C.
    Selvasekarapandian, S.
    DIGEST JOURNAL OF NANOMATERIALS AND BIOSTRUCTURES, 2023, 18 (04) : 1537 - 1555
  • [9] Research Progress on the Solid Electrolyte of Solid-State Sodium-Ion Batteries
    Zhao, Shuzhi
    Che, Haiying
    Chen, Suli
    Tao, Haixiang
    Liao, Jianping
    Liao, Xiao-Zhen
    Ma, Zi-Feng
    ELECTROCHEMICAL ENERGY REVIEWS, 2024, 7 (01)
  • [10] Effective Approaches of Improving the Performance of Chalcogenide Solid Electrolytes for All-Solid-State Sodium-Ion Batteries
    Dai, Hanqing
    Xu, Wenqian
    Hu, Zhe
    Chen, Yuanyuan
    Wei, Xian
    Yang, Bobo
    Chen, Zhihao
    Gu, Jing
    Yang, Dan
    Xie, Fengxian
    Zhang, Wanlu
    Guo, Ruiqian
    Zhang, Guoqi
    Wei, Wei
    FRONTIERS IN ENERGY RESEARCH, 2020, 8 (08):