A vision-based fully automated approach to robust image cropping detection

被引:12
|
作者
Fanfani, Marco [1 ]
Iuliani, Massimo [1 ,2 ]
Bellavia, Fabio [1 ]
Colombo, Carlo [1 ]
Piva, Alessandro [1 ,2 ]
机构
[1] Univ Florence, Dept Informat Engn, Florence, Italy
[2] Univ Florence, FORLAB Multimedia Forens Lab, Prato, Italy
关键词
Multimedia forensics; Robust computer vision; Cropping detection; Image content analysis; CAMERA CALIBRATION; FORGERY DETECTION;
D O I
10.1016/j.image.2019.115629
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The definition of valid and robust methodologies for assessing the authenticity of digital information is nowadays critical to contrast social manipulation through the media. A key research topic in multimedia forensics is the development of methods for detecting tampered content in large image collections without any human intervention. This paper introduces AMARCORD (Automatic Manhattan-scene AsymmetRically CrOpped imageRy Detector), a fully automated detector for exposing evidences of asymmetrical image cropping on Manhattan-World scenes. The proposed solution estimates and exploits the camera principal point, i.e., a physical feature extracted directly from the image content that is quite insensitive to image processing operations, such as compression and resizing, typical of social media platforms. Robust computer vision techniques are employed throughout, so as to cope with large sources of noise in the data and improve detection performance. The method leverages a novel metric based on robust statistics, and is also capable to decide autonomously whether the image at hand is tractable or not. The results of an extensive experimental evaluation covering several cropping scenarios demonstrate the effectiveness and robustness of our approach.
引用
收藏
页数:13
相关论文
empty
未找到相关数据