Holistically Associated Transductive Zero-Shot Learning

被引:5
作者
Xu, Yangyang [1 ]
Xu, Xuemiao [2 ,3 ]
Han, Guoqiang [1 ]
He, Shengfeng [1 ]
机构
[1] South China Univ Technol, Sch Comp Sci & Engn, Guangzhou 510006, Peoples R China
[2] South China Univ Technol, Sch Comp Sci & Engn, Minist Educ, Key Lab Big Data & Intelligent Robot & Guangdong, Guangzhou 510006, Peoples R China
[3] South China Univ Technol, State Key Lab Subtrop Bldg Sci, Prov Key Lab Computat Intelligence & Cyberspace I, Guangzhou 510006, Peoples R China
基金
中国国家自然科学基金;
关键词
Visualization; Semantics; Artificial neural networks; Predictive models; Training; Pairwise error probability; Loss measurement; Affinity matrix; class association; instance association; zero-shot learning (ZSL); FRAMEWORK;
D O I
10.1109/TCDS.2021.3049274
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
With the explosive growth of visual media categories, zero-shot learning (ZSL) aims to transfer the knowledge obtained from the seen classes to the unseen classes for recognizing novel instances. However, there is a domain gap between the seen and the unseen classes, and simply matching the unseen instances using nearest neighbor searching in the embedding space cannot bridge this gap effectively. In this article, we propose a holistically associated model to overcome this obstacle. In particular, the proposed model is designed to combat two fundamental problems of ZSL: 1) the representation learning and 2) label assignment of the unseen classes. The first problem is addressed by proposing an affinity propagation network, which considers holistic pairwise connections of all classes for producing exemplar features of the unseen samples. We cope with the second issue by proposing a progressive clustering module. It iteratively refines unseen clusters so that holistic unseen instance features can be used for a reliable classwise label assignment. Thanks to the precise exemplar features and classwise label assignment, our model eliminates the domain gap effectively. We extensively evaluate the proposed model on five human action and image data sets, i.e., Olympics Sports, HMDB51, UCF101, Animals with Attributes 2, and SUN. The experimental results show that the proposed model outperforms state-of-the-art methods on these substantially different data sets.
引用
收藏
页码:437 / 447
页数:11
相关论文
共 50 条
  • [1] Learning Unbiased Zero-Shot Semantic Segmentation Networks Via Transductive Transfer
    Lv, Fengmao
    Liu, Haiyang
    Wang, Yichen
    Zhao, Jiayi
    Yang, Guowu
    IEEE SIGNAL PROCESSING LETTERS, 2020, 27 : 1640 - 1644
  • [2] Attribute-Induced Bias Eliminating for Transductive Zero-Shot Learning
    Yao, Hantao
    Min, Shaobo
    Zhang, Yongdong
    Xu, Changsheng
    IEEE TRANSACTIONS ON MULTIMEDIA, 2022, 24 : 1933 - 1942
  • [3] Transductive Zero-Shot Hashing for Multilabel Image Retrieval
    Zou, Qin
    Cao, Ling
    Zhang, Zheng
    Chen, Long
    Wang, Song
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2022, 33 (04) : 1673 - 1687
  • [4] VMAN: A Virtual Mainstay Alignment Network for Transductive Zero-Shot Learning
    Xie, Guo-Sen
    Zhang, Xu-Yao
    Yao, Yazhou
    Zhang, Zheng
    Zhao, Fang
    Shao, Ling
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2021, 30 : 4316 - 4329
  • [5] Incremental Zero-Shot Learning
    Wei, Kun
    Deng, Cheng
    Yang, Xu
    Tao, Dacheng
    IEEE TRANSACTIONS ON CYBERNETICS, 2022, 52 (12) : 13788 - 13799
  • [6] Spherical Zero-Shot Learning
    Shen, Jiayi
    Xiao, Zehao
    Zhen, Xiantong
    Zhang, Lei
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2022, 32 (02) : 634 - 645
  • [7] Transductive Zero-Shot Recognition via Shared Model Space Learning
    Guo, Yuchen
    Ding, Guiguang
    Jin, Xiaoming
    Wang, Jianmin
    THIRTIETH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2016, : 3494 - 3500
  • [8] An Iterative Co-Training Transductive Framework for Zero Shot Learning
    Liu, Bo
    Hu, Lihua
    Dong, Qiulei
    Hu, Zhanyi
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2021, 30 : 6943 - 6956
  • [9] Hierarchical Prototype Learning for Zero-Shot Recognition
    Zhang, Xingxing
    Gui, Shupeng
    Zhu, Zhenfeng
    Zhao, Yao
    Liu, Ji
    IEEE TRANSACTIONS ON MULTIMEDIA, 2020, 22 (07) : 1692 - 1703
  • [10] Differential Refinement Network for Zero-Shot Learning
    Tian, Yi
    Zhang, Yilei
    Huang, Yaping
    Xu, Wanru
    Ding, Zhengming
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2024, 35 (03) : 4164 - 4178