Powder-sintering derived 3D porous current collector for stable lithium metal anode

被引:24
作者
Fan, Hailin [1 ]
Dong, Qingyuan [1 ]
Gao, Chunhui [1 ]
Hong, Bo [2 ]
Lai, Yanqing [1 ]
机构
[1] Cent S Univ, Sch Met & Environm, Changsha 410083, Hunan, Peoples R China
[2] Cent S Univ, Sch Mat Sci & Engn, Changsha 410083, Hunan, Peoples R China
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
Metallic composites; Electrodeposition; Energy storage and conversion; Porous materials; SITES;
D O I
10.1016/j.matlet.2018.09.067
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Lithium metal, own to high capacity, negative potential and good conductivity, has a huge application prospect for next-generation lithium batteries. Nevertheless, its commercialization is largely hindered by volume expansion and Li dendrites. In this work, we employ a low-cost and scalable powder-sintering method to obtain 3D porous Cu-Zn alloy, which can be used as a host material to induce dendrite-free Li deposition. 3D porous Cu-Zn alloy renders high surface areas, uniform spatial structure and even the good lithiophilicity, resulting in low Li deposition interface energy and low lithium deposition barrier. As a result, 3D porous Cu-Zn alloy electrode exhibits a superior Coulombic efficiency of 98.3% for 160 cycles at 1.0 mA/cm(2), whereas the Coulombic efficiency of Cu foil electrode quickly drops to less than 80.0% only after 55 cycles. In addition, 3D porous Cu-Zn alloy electrode still runs stably for 45 cycles at 10.0 mA/cm(2), and even at a high deposition capacity of 5.0 mAh/cm(2). Therefore, powder-sintering derived 3D porous Cu-Zn alloy may provide innovative insights of electrode designs for next-generation metallic lithium anodes. (C) 2018 Elsevier B.V. All rights reserved.
引用
收藏
页码:69 / 73
页数:5
相关论文
共 11 条
[1]   Silver sites guide spatially homogeneous plating of lithium metal in 3D host [J].
Fan, Hailin ;
Gao, Chunhui ;
DonG, Qingyuan ;
Hong, Bo ;
FanG, Zhao ;
Hu, Mengyin ;
Lai, Yanqing .
JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2018, 824 :175-180
[2]   Spatially uniform deposition of lithium metal in 3D Janus hosts [J].
Hong, Bo ;
Fan, Hailin ;
Cheng, Xin-Bing ;
Yan, Xiaolin ;
Hong, Shu ;
Dong, Qingyuan ;
Gao, Chunhui ;
Zhang, Zhian ;
Lai, Yanqing ;
Zhang, Qiang .
ENERGY STORAGE MATERIALS, 2019, 16 :259-266
[3]   Hierarchically Bicontinuous Porous Copper as Advanced 3D Skeleton for Stable Lithium Storage [J].
Ke, Xi ;
Cheng, Yifeng ;
Liu, Jun ;
Liu, Liying ;
Wang, Naiguang ;
Liu, Jianping ;
Zhi, Chunyi ;
Shi, Zhicong ;
Guo, Zaiping .
ACS APPLIED MATERIALS & INTERFACES, 2018, 10 (16) :13552-13561
[4]   Dendrite-free Li metal anode by lowering deposition interface energy with Cu99Zn alloy coating [J].
Liu, Shan ;
Zhang, Xinyue ;
Li, Rongsheng ;
Gao, Libo ;
Luo, Jiayan .
ENERGY STORAGE MATERIALS, 2018, 14 :143-148
[5]   Stabilization of lithium metal anodes using silane-based coatings [J].
Thompson, Rebecca S. ;
Schroeder, David J. ;
Lopez, Carmen M. ;
Neuhold, Susanna ;
Vaughey, John T. .
ELECTROCHEMISTRY COMMUNICATIONS, 2011, 13 (12) :1369-1372
[6]   Study of metal injection molding of highly porous titanium by physical modeling and direct experiments [J].
Tuncer, Nihan ;
Bram, Martin ;
Laptev, Alexander ;
Beck, Tilmann ;
Moser, Alexander ;
Buchkremer, Hans Peter .
JOURNAL OF MATERIALS PROCESSING TECHNOLOGY, 2014, 214 (07) :1352-1360
[7]  
Wang S. H, 2017, ADV MATER, V29
[8]   Toward Dendrite-Free Lithium Deposition via Structural and Interfacial Synergistic Effects of 3D Graphene@Ni Scaffold [J].
Xie, Keyu ;
Wei, Wenfei ;
Yuan, Kai ;
Lu, Wei ;
Guo, Min ;
Li, Zhihua ;
Song, Qiang ;
Liu, Xingrui ;
Wang, Jian-Gan ;
Shen, Chao .
ACS APPLIED MATERIALS & INTERFACES, 2016, 8 (39) :26091-26097
[9]   Lithium dendrite suppression and cycling efficiency of lithium anode [J].
Zhang, Peng ;
Zhu, Jiajia ;
Wang, Miao ;
Imanishi, Nobuyuki ;
Yamamoto, Osamu .
ELECTROCHEMISTRY COMMUNICATIONS, 2018, 87 :27-30
[10]   Lithiophilic Sites in Doped Graphene Guide Uniform Lithium Nucleation for Dendrite-Free Lithium Metal Anodes [J].
Zhang, Rui ;
Chen, Xiao-Ru ;
Chen, Xiang ;
Cheng, Xin-Bing ;
Zhang, Xue-Qiang ;
Yan, Chong ;
Zhang, Qiang .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2017, 56 (27) :7764-7768