Overcoming the Achilles' heel of photodynamic therapy

被引:1475
作者
Fan, Wenpei [1 ,2 ,3 ]
Huang, Peng [1 ]
Chen, Xiaoyuan [3 ]
机构
[1] Shenzhen Univ, Sch Med, Dept Biomed Engn, Guangdong Key Lab Biomed Measurements & Ultrasoun, Shenzhen 518060, Peoples R China
[2] Shenzhen Univ, Coll Optoelect Engn, Key Lab Optoelect Devices & Syst, Minist Educ & Guangdong Prov, Shenzhen 518060, Peoples R China
[3] Natl Inst Biomed Imaging & Bioengn, Lab Mol Imaging & Nanomed, NIH, Bethesda, MD 20892 USA
基金
美国国家科学基金会;
关键词
UP-CONVERSION NANOPARTICLES; MESOPOROUS SILICA NANOPARTICLES; SINGLET OXYGEN GENERATION; INTRANUCLEAR DRUG-DELIVERY; RESONANCE ENERGY-TRANSFER; IN-VITRO DEMONSTRATION; X-RAY LUMINESCENCE; 2-PHOTON ABSORPTION; INDOCYANINE-GREEN; CANCER-CELLS;
D O I
10.1039/c6cs00616g
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Photodynamic therapy (PDT) has been applied to treat a wide range of medical conditions, including wet age-related macular degeneration psoriasis, atherosclerosis, viral infection and malignant cancers. However, the tissue penetration limitation of excitation light hinders the widespread clinical use of PDT. To overcome this "Achilles'heel'', deep PDT, a novel type of phototherapy, has been developed for the efficient treatment of deep-seated diseases. Based on the different excitation sources, including near-infrared (NIR) light, X-ray radiation, and internal self-luminescence, a series of deep PDT techniques have been explored to demonstrate the advantages of deep cancer therapy over conventional PDT excited by ultraviolet-visible (UV-Vis) light. In particular, the featured applications of deep PDT, such as organelle-targeted deep PDT, hypoxic deep PDT and deep PDT-involved multimodal synergistic therapy are discussed. Finally, the future development and potential challenges of deep PDT are also elucidated for clinical translation. It is highly expected that deep PDT will be developed as a versatile, depth/oxygen-independent and minimally invasive strategy for treating a variety of malignant tumours at deep locations.
引用
收藏
页码:6488 / 6519
页数:32
相关论文
共 316 条
[41]   Well-defined mesoporous nanostructure modulates three-dimensional interface energy transfer for two-photon activated photodynamic therapy [J].
Cheng, Shih-Hsun ;
Hsieh, Cheng-Chih ;
Chen, Nai-Tzu ;
Chu, Chia-Hui ;
Huang, Ching-Mao ;
Chou, Pi-Tai ;
Tseng, Fan-Gang ;
Yang, Chung-Shi ;
Mou, Chung-Yuan ;
Lo, Leu-Wei .
NANO TODAY, 2011, 6 (06) :552-563
[42]   Femto-second laser beam with a low power density achieved a two-photon photodynamic cancer therapy with quantum dots [J].
Chou, Kai-Liang ;
Won, Nayoun ;
Kwag, Jungheon ;
Kim, Sungjee ;
Chen, Ji-Yao .
JOURNAL OF MATERIALS CHEMISTRY B, 2013, 1 (36) :4584-4592
[43]   X-ray induced singlet oxygen generation by nanoparticle-photosensitizer conjugates for photodynamic therapy: determination of singlet oxygen quantum yield [J].
Clement, Sandhya ;
Deng, Wei ;
Camilleri, Elizabeth ;
Wilson, Brian C. ;
Goldys, Ewa M. .
SCIENTIFIC REPORTS, 2016, 6
[44]   Silica-based nanoparticles for photodynamic therapy applications [J].
Couleaud, Pierre ;
Morosini, Vincent ;
Frochot, Celine ;
Richeter, Sebastien ;
Raehm, Laurence ;
Durand, Jean-Olivier .
NANOSCALE, 2010, 2 (07) :1083-1095
[45]   In Vivo Targeted Deep-Tissue Photodynamic Therapy Based on Near-Infrared Light Triggered Upconversion Nanoconstruct [J].
Cui, Sisi ;
Yin, Deyan ;
Chen, Yuqi ;
Di, Yingfeng ;
Chen, Haiyan ;
Ma, Yuxiang ;
Achilefu, Samuel ;
Gu, Yueqing .
ACS NANO, 2013, 7 (01) :676-688
[46]   Combination of microRNA therapeutics with small-molecule anticancer drugs: Mechanism of action and co-delivery nanocarriers [J].
Dai, Xin ;
Tan, Chalet .
ADVANCED DRUG DELIVERY REVIEWS, 2015, 81 :184-197
[47]   Nanoprobes with near-infrared persistent luminescence for in vivo imaging [J].
de Chermont, Quentin le Masne ;
Chaneac, Corinne ;
Seguin, Johanne ;
Pelle, Fabienne ;
Maitrejean, Serge ;
Jolivet, Jean-Pierre ;
Gourier, Didier ;
Bessodes, Michel ;
Scherman, Daniel .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2007, 104 (22) :9266-9271
[48]   Photosensitized singlet oxygen and its applications [J].
DeRosa, MC ;
Crutchley, RJ .
COORDINATION CHEMISTRY REVIEWS, 2002, 233 :351-371
[49]   Liposomes for photodynamic therapy [J].
Derycke, ASL ;
de Witte, PAM .
ADVANCED DRUG DELIVERY REVIEWS, 2004, 56 (01) :17-30
[50]   Singlet oxygen generation via two-photon excited FRET [J].
Dichtel, WR ;
Serin, JM ;
Edder, C ;
Fréchet, JMJ ;
Matuszewski, M ;
Tan, LS ;
Ohulchanskyy, TY ;
Prasad, PN .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2004, 126 (17) :5380-5381