Lyapunov functional techniques for the global stability analysis of a delayed SIRS epidemic model

被引:87
作者
Enatsu, Yoichi [1 ]
Nakata, Yukihiko [2 ]
Muroya, Yoshiaki [3 ]
机构
[1] Waseda Univ, Dept Pure & Appl Math, Shinjuku Ku, Tokyo 1698555, Japan
[2] Basque Ctr Appl Math, E-48009 Bilbao, Spain
[3] Waseda Univ, Dept Math, Shinjuku Ku, Tokyo 1698555, Japan
基金
日本学术振兴会;
关键词
SIRS epidemic model; Nonlinear incidence rate; Global asymptotic stability; Lyapunov functional; Distributed delays; BEHAVIOR;
D O I
10.1016/j.nonrwa.2012.01.007
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the global dynamics of a delayed SIRS epidemic model for transmission of disease with a class of nonlinear incidence rates of the form beta S(t) integral(h)(0), f(tau)G(I(t - tau))d tau. Applying Lyapunov functional techniques in the recent paper [Y. Nakata, Y. Enatsu, Y. Muroya, On the global stability of an SIRS epidemic model with distributed delays, Discrete Contin. Dyn. Syst. Supplement (2011) 1119-1128], we establish sufficient conditions of the rate of immunity loss for the global asymptotic stability of an endemic equilibrium for the model. In particular, we offer a unified construction of Lyapunov functionals for both cases of R-0 <= 1 and R-0 > 1, where R-0 is the basic reproduction number. (C) 2012 Elsevier Ltd. All rights reserved.
引用
收藏
页码:2120 / 2133
页数:14
相关论文
共 23 条
[1]   Global asymptotic stability of an SIR epidemic model with distributed time delay [J].
Beretta, E ;
Hara, T ;
Ma, WB ;
Takeuchi, Y .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2001, 47 (06) :4107-4115
[2]   Convergence results in SIR epidemic models with varying population sizes [J].
Beretta, E ;
Takeuchi, Y .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1997, 28 (12) :1909-1921
[3]   GENERALIZATION OF THE KERMACK-MCKENDRICK DETERMINISTIC EPIDEMIC MODEL [J].
CAPASSO, V ;
SERIO, G .
MATHEMATICAL BIOSCIENCES, 1978, 42 (1-2) :43-61
[4]   An sirs epidemic model [J].
Chen J. .
Applied Mathematics-A Journal of Chinese Universities, 2004, 19 (1) :101-108
[5]   Global dynamics of a delayed SIRS epidemic model with a wide class of nonlinear incidence rates [J].
Enatsu, Yoichi ;
Messina, Eleonora ;
Nakata, Yukihiko ;
Muroya, Yoshiaki ;
Russo, Elvira ;
Vecchio, Antonia .
Journal of Applied Mathematics and Computing, 2012, 39 (1-2) :15-34
[6]   GLOBAL STABILITY OF SIR EPIDEMIC MODELS WITH A WIDE CLASS OF NONLINEAR INCIDENCE RATES AND DISTRIBUTED DELAYS [J].
Enatsu, Yoichi ;
Nakata, Yukihiko ;
Muroya, Yoshiaki .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2011, 15 (01) :61-74
[7]   GLOBAL STABILITY FOR A CLASS OF DISCRETE SIR EPIDEMIC MODELS [J].
Enatsu, Yoichi ;
Nakata, Yukihiko ;
Muroya, Yoshiaki .
MATHEMATICAL BIOSCIENCES AND ENGINEERING, 2010, 7 (02) :347-361
[8]   Global analysis on delay epidemiological dynamic models with nonlinear incidence [J].
Huang, Gang ;
Takeuchi, Yasuhiro .
JOURNAL OF MATHEMATICAL BIOLOGY, 2011, 63 (01) :125-139
[9]   Global Stability for Delay SIR and SEIR Epidemic Models with Nonlinear Incidence Rate [J].
Huang, Gang ;
Takeuchi, Yasuhiro ;
Ma, Wanbiao ;
Wei, Daijun .
BULLETIN OF MATHEMATICAL BIOLOGY, 2010, 72 (05) :1192-1207
[10]   Global properties of infectious disease models with nonlinear incidence [J].
Korobeinikov, Andrei .
BULLETIN OF MATHEMATICAL BIOLOGY, 2007, 69 (06) :1871-1886