Lyapunov functional techniques for the global stability analysis of a delayed SIRS epidemic model

被引:85
作者
Enatsu, Yoichi [1 ]
Nakata, Yukihiko [2 ]
Muroya, Yoshiaki [3 ]
机构
[1] Waseda Univ, Dept Pure & Appl Math, Shinjuku Ku, Tokyo 1698555, Japan
[2] Basque Ctr Appl Math, E-48009 Bilbao, Spain
[3] Waseda Univ, Dept Math, Shinjuku Ku, Tokyo 1698555, Japan
基金
日本学术振兴会;
关键词
SIRS epidemic model; Nonlinear incidence rate; Global asymptotic stability; Lyapunov functional; Distributed delays; BEHAVIOR;
D O I
10.1016/j.nonrwa.2012.01.007
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the global dynamics of a delayed SIRS epidemic model for transmission of disease with a class of nonlinear incidence rates of the form beta S(t) integral(h)(0), f(tau)G(I(t - tau))d tau. Applying Lyapunov functional techniques in the recent paper [Y. Nakata, Y. Enatsu, Y. Muroya, On the global stability of an SIRS epidemic model with distributed delays, Discrete Contin. Dyn. Syst. Supplement (2011) 1119-1128], we establish sufficient conditions of the rate of immunity loss for the global asymptotic stability of an endemic equilibrium for the model. In particular, we offer a unified construction of Lyapunov functionals for both cases of R-0 <= 1 and R-0 > 1, where R-0 is the basic reproduction number. (C) 2012 Elsevier Ltd. All rights reserved.
引用
收藏
页码:2120 / 2133
页数:14
相关论文
共 23 条
  • [1] Global asymptotic stability of an SIR epidemic model with distributed time delay
    Beretta, E
    Hara, T
    Ma, WB
    Takeuchi, Y
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2001, 47 (06) : 4107 - 4115
  • [2] Convergence results in SIR epidemic models with varying population sizes
    Beretta, E
    Takeuchi, Y
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1997, 28 (12) : 1909 - 1921
  • [3] GENERALIZATION OF THE KERMACK-MCKENDRICK DETERMINISTIC EPIDEMIC MODEL
    CAPASSO, V
    SERIO, G
    [J]. MATHEMATICAL BIOSCIENCES, 1978, 42 (1-2) : 43 - 61
  • [4] An sirs epidemic model
    Chen J.
    [J]. Applied Mathematics-A Journal of Chinese Universities, 2004, 19 (1) : 101 - 108
  • [5] Global dynamics of a delayed SIRS epidemic model with a wide class of nonlinear incidence rates
    Yoichi Enatsu
    Eleonora Messina
    Yukihiko Nakata
    Yoshiaki Muroya
    Elvira Russo
    Antonia Vecchio
    [J]. Journal of Applied Mathematics and Computing, 2012, 39 (1-2) : 15 - 34
  • [6] GLOBAL STABILITY OF SIR EPIDEMIC MODELS WITH A WIDE CLASS OF NONLINEAR INCIDENCE RATES AND DISTRIBUTED DELAYS
    Enatsu, Yoichi
    Nakata, Yukihiko
    Muroya, Yoshiaki
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2011, 15 (01): : 61 - 74
  • [7] GLOBAL STABILITY FOR A CLASS OF DISCRETE SIR EPIDEMIC MODELS
    Enatsu, Yoichi
    Nakata, Yukihiko
    Muroya, Yoshiaki
    [J]. MATHEMATICAL BIOSCIENCES AND ENGINEERING, 2010, 7 (02) : 347 - 361
  • [8] Global analysis on delay epidemiological dynamic models with nonlinear incidence
    Huang, Gang
    Takeuchi, Yasuhiro
    [J]. JOURNAL OF MATHEMATICAL BIOLOGY, 2011, 63 (01) : 125 - 139
  • [9] Global Stability for Delay SIR and SEIR Epidemic Models with Nonlinear Incidence Rate
    Huang, Gang
    Takeuchi, Yasuhiro
    Ma, Wanbiao
    Wei, Daijun
    [J]. BULLETIN OF MATHEMATICAL BIOLOGY, 2010, 72 (05) : 1192 - 1207
  • [10] Global properties of infectious disease models with nonlinear incidence
    Korobeinikov, Andrei
    [J]. BULLETIN OF MATHEMATICAL BIOLOGY, 2007, 69 (06) : 1871 - 1886