Methane utilization in Methylomicrobium alcaliphilum 20ZR: a systems approach

被引:81
作者
Akberdin, Ilya R. [1 ,2 ,3 ,4 ]
Thompson, Merlin [1 ,2 ]
Hamilton, Richard [1 ,2 ]
Desai, Nalini [5 ]
Alexander, Danny [5 ]
Henard, Calvin A. [6 ]
Guarnieri, Michael T. [6 ]
Kalyuzhnaya, Marina G. [1 ,2 ]
机构
[1] San Diego State Univ, Dept Biol, San Diego, CA 92182 USA
[2] San Diego State Univ, Viral Informat Inst, San Diego, CA 92182 USA
[3] Inst Cytol & Genet, Novosibirsk, Russia
[4] Novosibirsk State Univ, Novosibirsk, Russia
[5] Metabolon Inc, 617 Davis Dr,Suite 400, Durham, NC 27713 USA
[6] Natl Renewable Energy Lab, Natl Bioenergy Ctr, 15013 Denver West Pkwy,MS 3323, Golden, CO 80401 USA
来源
SCIENTIFIC REPORTS | 2018年 / 8卷
基金
美国国家科学基金会;
关键词
CONSTRAINT-BASED MODELS; PHOSPHOKETOLASE PATHWAY; METHANOTROPHIC BACTERIA; BIOCHEMICAL-PROPERTIES; METABOLISM; PYROPHOSPHATE; GROWTH; BIOCONVERSION; CONVERSION; ECTOINE;
D O I
10.1038/s41598-018-20574-z
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Biological methane utilization, one of the main sinks of the greenhouse gas in nature, represents an attractive platform for production of fuels and value-added chemicals. Despite the progress made in our understanding of the individual parts of methane utilization, our knowledge of how the whole-cell metabolic network is organized and coordinated is limited. Attractive growth and methane-conversion rates, a complete and expert-annotated genome sequence, as well as large enzymatic, C-13-labeling, and transcriptomic datasets make Methylomicrobium alcaliphilum 20Z(R) an exceptional model system for investigating methane utilization networks. Here we present a comprehensive metabolic framework of methane and methanol utilization in M. alcaliphilum 20Z(R). A set of novel metabolic reactions governing carbon distribution across central pathways in methanotrophic bacteria was predicted by in-silico simulations and confirmed by global non-targeted metabolomics and enzymatic evidences. Our data highlight the importance of substitution of ATP-linked steps with PPi-dependent reactions and support the presence of a carbon shunt from acetyl-CoA to the pentose-phosphate pathway and highly branched TCA cycle. The diverged TCA reactions promote balance between anabolic reactions and redox demands. The computational framework of C-1-metabolism in methanotrophic bacteria can represent an efficient tool for metabolic engineering or ecosystem modeling.
引用
收藏
页数:13
相关论文
共 68 条
  • [51] The Bacteriohopanepolyol Inventory of Novel Aerobic Methane Oxidising Bacteria Reveals New Biomarker Signatures of Aerobic Methanotrophy in Marine Systems
    Rush, Darci
    Osborne, Kate A.
    Birgel, Daniel
    Kappler, Andreas
    Hirayama, Hisako
    Peckmann, Joern
    Poulton, Simon W.
    Nickel, Julia C.
    Mangelsdorf, Kai
    Kalyuzhnaya, Marina
    Sidgwick, Frances R.
    Talbot, Helen M.
    [J]. PLOS ONE, 2016, 11 (11):
  • [52] A 21st-century shift from fossil-fuel to biogenic methane emissions indicated by 13CH4
    Schaefer, Hinrich
    Fletcher, Sara E. Mikaloff
    Veidt, Cordelia
    Lassey, Keith R.
    Brailsford, Gordon W.
    Bromley, Tony M.
    Dlugokencky, Edward J.
    Michel, Sylvia E.
    Miller, John B.
    Levin, Ingeborg
    Lowe, Dave C.
    Martin, Ross J.
    Vaughn, Bruce H.
    White, James W. C.
    [J]. SCIENCE, 2016, 352 (6281) : 80 - 84
  • [53] Quantitative prediction of cellular metabolism with constraint-based models: the COBRA Toolbox v2.0
    Schellenberger, Jan
    Que, Richard
    Fleming, Ronan M. T.
    Thiele, Ines
    Orth, Jeffrey D.
    Feist, Adam M.
    Zielinski, Daniel C.
    Bordbar, Aarash
    Lewis, Nathan E.
    Rahmanian, Sorena
    Kang, Joseph
    Hyduke, Daniel R.
    Palsson, Bernhard O.
    [J]. NATURE PROTOCOLS, 2011, 6 (09) : 1290 - 1307
  • [54] SEIFTER S, 1950, ARCH BIOCHEM, V25, P191
  • [55] Methanotrophs and copper
    Semrau, Jeremy D.
    DiSpirito, Alan A.
    Yoon, Sukhwan
    [J]. FEMS MICROBIOLOGY REVIEWS, 2010, 34 (04) : 496 - 531
  • [56] Arabinose is metabolized via a phosphoketolase pathway in Clostridium acetobutylicum ATCC 824
    Servinsky, M. D.
    Germane, K. L.
    Liu, S.
    Kiel, J. T.
    Clark, A. M.
    Shankar, J.
    Sund, C. J.
    [J]. JOURNAL OF INDUSTRIAL MICROBIOLOGY & BIOTECHNOLOGY, 2012, 39 (12) : 1859 - 1867
  • [57] Simultaneously Mitigating Near-Term Climate Change and Improving Human Health and Food Security
    Shindell, Drew
    Kuylenstierna, Johan C. I.
    Vignati, Elisabetta
    van Dingenen, Rita
    Amann, Markus
    Klimont, Zbigniew
    Anenberg, Susan C.
    Muller, Nicholas
    Janssens-Maenhout, Greet
    Raes, Frank
    Schwartz, Joel
    Faluvegi, Greg
    Pozzoli, Luca
    Kupiainen, Kaarle
    Hoeglund-Isaksson, Lena
    Emberson, Lisa
    Streets, David
    Ramanathan, V.
    Hicks, Kevin
    Oanh, N. T. Kim
    Milly, George
    Williams, Martin
    Demkine, Volodymyr
    Fowler, David
    [J]. SCIENCE, 2012, 335 (6065) : 183 - 189
  • [58] Smith T. J., 2012, TOPICS ECOLOGICAL EN
  • [59] Reversing methanogenesis to capture methane for liquid biofuel precursors
    Soo, Valerie W. C.
    McAnulty, Michael J.
    Tripathi, Arti
    Zhu, Fayin
    Zhang, Limin
    Hatzakis, Emmanuel
    Smith, Philip B.
    Agrawal, Saumya
    Nazem-Bokaee, Hadi
    Gopalakrishnan, Saratram
    Salis, Howard M.
    Ferry, James G.
    Maranas, Costas D.
    Patterson, Andrew D.
    Wood, Thomas K.
    [J]. MICROBIAL CELL FACTORIES, 2016, 15
  • [60] Unusual cyanobacterial TCA cycles: not broken just different
    Steinhauser, Dirk
    Fernie, Alisdair R.
    Araujo, Wagner L.
    [J]. TRENDS IN PLANT SCIENCE, 2012, 17 (09) : 503 - 509