Weak separation properties for self-similar sets

被引:89
|
作者
Zerner, MPW
机构
关键词
self-similar sets; fractals; weak separation property;
D O I
10.1090/S0002-9939-96-03527-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We develop a theory for self-similar sets in R(s) that fulfil the weak separation property of Lau and Ngai, which is weaker than the open set condition of Hutchinson.
引用
收藏
页码:3529 / 3539
页数:11
相关论文
共 50 条
  • [41] Hausdorff dimension of the arithmetic sum of self-similar sets
    Jiang, Kan
    INDAGATIONES MATHEMATICAE-NEW SERIES, 2016, 27 (03): : 684 - 701
  • [42] Topological measures, image transformations and self-similar sets
    Johan F. Aarnes
    Ørjan Johansen
    Alf B. Rustad
    Acta Mathematica Hungarica, 2005, 109 : 65 - 97
  • [43] On a random walk model on sets with self-similar structure
    N. S. Arkashov
    V. A. Seleznev
    Siberian Mathematical Journal, 2013, 54 : 968 - 983
  • [44] On a random walk model on sets with self-similar structure
    Arkashov, N. S.
    Seleznev, V. A.
    SIBERIAN MATHEMATICAL JOURNAL, 2013, 54 (06) : 968 - 983
  • [45] Curvature-direction measures of self-similar sets
    Bohl, Tilman Johannes
    Zaehle, Martina
    GEOMETRIAE DEDICATA, 2013, 167 (01) : 215 - 231
  • [46] Topological measures, image transformations and self-similar sets
    Aarnes, JF
    Johansen, O
    Rustad, AB
    ACTA MATHEMATICA HUNGARICA, 2005, 109 (1-2) : 65 - 97
  • [47] Measures with predetermined regularity and inhomogeneous self-similar sets
    Kaenmaki, Antti
    Lehrback, Juha
    ARKIV FOR MATEMATIK, 2017, 55 (01): : 165 - 184
  • [48] The Hausdorff measure of the self-similar sets——The Koch curve
    周作领
    Science China Mathematics, 1998, (07) : 723 - 728
  • [49] Self-similar sets satisfying the common point property
    Sirvent, Victor F.
    CHAOS SOLITONS & FRACTALS, 2014, 69 : 117 - 128
  • [50] LIPSCHITZ EQUIVALENCE OF SELF-SIMILAR SETS WITH EXACT OVERLAPS
    Jiang, Kan
    Wang, Songjing
    Xi, Lifeng
    ANNALES ACADEMIAE SCIENTIARUM FENNICAE-MATHEMATICA, 2018, 43 : 905 - 912