Algebraic formulation of quantum error correction

被引:3
作者
Beny, Cedric [1 ]
Kribs, David W. [2 ,3 ]
Pasieka, Aron [4 ]
机构
[1] Univ Waterloo, Dept Appl Math, Waterloo, ON N2L 3G1, Canada
[2] Univ Guelph, Dept Math & Stat, Guelph, ON N1G 2W1, Canada
[3] Univ Waterloo, Inst Quantum Comp, Waterloo, ON N2L 3G1, Canada
[4] Univ Guelph, Dept Phys, Guelph, ON N1G 2W1, Canada
关键词
quantum computing; quantum error correction; operator algebra;
D O I
10.1142/S0219749908003839
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We give a brief introduction to the algebraic formulation of error correction in quantum computing called operator algebra quantum error correction (OAQEC). Then we extend one of the basic results for subsystem codes in operator quantum error correction (OQEC) to the OAQEC setting: Every hybrid classical-quantum code is shown to be unitarily recoverable in an appropriate sense. The algebraic approach of the proof yields a new, less technical proof for the OQEC case.
引用
收藏
页码:597 / 603
页数:7
相关论文
共 50 条
[41]   Advances in quantum error correction based on superconducting quantum systems* [J].
Chen Zi-Jie ;
Pan Xiao-Xuan ;
Hua Zi-Yue ;
Wang Wei-Ting ;
Ma Yu-Wei ;
Li Ming ;
Zou Xu-Bo ;
Sun Lu-Yan ;
Zou Chang-Ling .
ACTA PHYSICA SINICA, 2022, 71 (24)
[42]   On the efficiency of quantum error correction for quantum image transmission algorithm [J].
S S Ivanov ;
P A Gilev ;
I Y Popov .
Pramana, 96
[43]   On the efficiency of quantum error correction for quantum image transmission algorithm [J].
Ivanov, S. S. ;
Gilev, P. A. ;
Popov, I. Y. .
PRAMANA-JOURNAL OF PHYSICS, 2022, 96 (04)
[44]   Scalable Connection of Qubits to Quantum Error Correction Systems using Ethernet [J].
Wichmann, Jan-Erik R. ;
Sano, Kentaro .
2024 IEEE INTERNATIONAL CONFERENCE ON CLUSTER COMPUTING WORKSHOPS, CLUSTER WORKSHOPS 2024, 2024, :168-169
[45]   RESCQ: Realtime Scheduling for Continuous Angle Quantum Error Correction Architectures [J].
Sethi, Sayam ;
Baker, Jonathan Mark .
PROCEEDINGS OF THE 30TH ACM INTERNATIONAL CONFERENCE ON ARCHITECTURAL SUPPORT FOR PROGRAMMING LANGUAGES AND OPERATING SYSTEMS, VOL 2, ASPLOS 2025, 2025, :1028-1043
[46]   Quantum error correction of coherent errors by randomization [J].
O. Kern ;
G. Alber ;
D. L. Shepelyansky .
The European Physical Journal D - Atomic, Molecular, Optical and Plasma Physics, 2005, 32 :153-156
[47]   Quantum error correction via convex optimization [J].
Kosut, Robert L. ;
Lidar, Daniel A. .
QUANTUM INFORMATION PROCESSING, 2009, 8 (05) :443-459
[48]   Channel-Optimized Quantum Error Correction [J].
Taghavi, Soraya ;
Kosut, Robert L. ;
Lidar, Daniel A. .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2010, 56 (03) :1461-1473
[49]   Towards scalable bosonic quantum error correction [J].
Terhal, B. M. ;
Conrad, J. ;
Vuillot, C. .
QUANTUM SCIENCE AND TECHNOLOGY, 2020, 5 (04)
[50]   Quantum error correction for various forms of noise [J].
Gea-Banacloche, J ;
Clemens, JP .
FLUCTUATIONS AND NOISE IN PHOTONICS AND QUANTUM OPTICS II, 2004, 5468 :252-261