Algebraic formulation of quantum error correction

被引:3
|
作者
Beny, Cedric [1 ]
Kribs, David W. [2 ,3 ]
Pasieka, Aron [4 ]
机构
[1] Univ Waterloo, Dept Appl Math, Waterloo, ON N2L 3G1, Canada
[2] Univ Guelph, Dept Math & Stat, Guelph, ON N1G 2W1, Canada
[3] Univ Waterloo, Inst Quantum Comp, Waterloo, ON N2L 3G1, Canada
[4] Univ Guelph, Dept Phys, Guelph, ON N1G 2W1, Canada
关键词
quantum computing; quantum error correction; operator algebra;
D O I
10.1142/S0219749908003839
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We give a brief introduction to the algebraic formulation of error correction in quantum computing called operator algebra quantum error correction (OAQEC). Then we extend one of the basic results for subsystem codes in operator quantum error correction (OQEC) to the OAQEC setting: Every hybrid classical-quantum code is shown to be unitarily recoverable in an appropriate sense. The algebraic approach of the proof yields a new, less technical proof for the OQEC case.
引用
收藏
页码:597 / 603
页数:7
相关论文
共 50 条
  • [1] Operator Algebraic Formulation of the Stabilizer Formalism for Quantum Error Correction
    N. Johnston
    D. W. Kribs
    C.-W. Teng
    Acta Applicandae Mathematicae, 2009, 108 : 687 - 696
  • [2] Operator Algebraic Formulation of the Stabilizer Formalism for Quantum Error Correction
    Johnston, N.
    Kribs, D. W.
    Teng, C. -W.
    ACTA APPLICANDAE MATHEMATICAE, 2009, 108 (03) : 687 - 696
  • [3] Continuous quantum error correction
    Sarovar, M
    Milburn, GJ
    FLUCTUATIONS AND NOISE IN PHOTONICS AND QUANTUM OPTICS III, 2005, 5846 : 158 - 166
  • [4] Quantum error correction in crossbar architectures
    Helsen, Jonas
    Steudtner, Mark
    Veldhorst, Menno
    Wehner, Stephanie
    QUANTUM SCIENCE AND TECHNOLOGY, 2018, 3 (03):
  • [5] Quantum error correction: an introductory guide
    Roffe, Joschka
    CONTEMPORARY PHYSICS, 2019, 60 (03) : 226 - 245
  • [6] Quantum interleaver: Quantum error correction for burst error
    Kawabata, S
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2000, 69 (11) : 3540 - 3543
  • [7] Modeling coherent errors in quantum error correction
    Greenbaum, Daniel
    Dutton, Zachary
    QUANTUM SCIENCE AND TECHNOLOGY, 2018, 3 (01):
  • [8] Robustness-optimized quantum error correction
    Layden, David
    Huang, Louisa Ruixue
    Cappellaro, Paola
    QUANTUM SCIENCE AND TECHNOLOGY, 2020, 5 (02):
  • [9] Some Progress on Quantum Error Correction for Discrete and Continuous Error Models
    Li, Jincao
    IEEE ACCESS, 2020, 8 (46998-47012) : 46998 - 47012
  • [10] Approximate Quantum Error Correction
    Benjamin Schumacher
    Michael D. Westmoreland
    Quantum Information Processing, 2002, 1 : 5 - 12