An Existence Result for Fractional Kirchhoff-Type Equations

被引:19
作者
Bisci, Giovanni Molica [1 ]
Tulone, Francesco [2 ]
机构
[1] Univ Reggio Calabria, Dipartimento PAU, I-89124 Reggio Di Calabria, Italy
[2] Univ Palermo, Dept Math, Via Archirafi 34, I-90123 Palermo, Italy
来源
ZEITSCHRIFT FUR ANALYSIS UND IHRE ANWENDUNGEN | 2016年 / 35卷 / 02期
关键词
Fractional equations; variational methods; critical point results; BREZIS-NIRENBERG RESULT; NONLINEAR EQUATIONS; BOUNDARY; LAPLACIANS; REGULARITY; SYSTEMS;
D O I
10.4171/ZAA/1561
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The aim of this paper is to study a class of nonlocal fractional Laplacian equations of Kirchhoff-type. More precisely, by using an appropriate analytical context on fractional Sobolev spaces, we establish the existence of one non-trivial weak solution for nonlocal fractional problems exploiting suitable variational methods.
引用
收藏
页码:181 / 197
页数:17
相关论文
共 34 条
[1]   Local asymptotic stability for polyharmonic Kirchhoff systems [J].
Autuori, G. ;
Pucci, P. .
APPLICABLE ANALYSIS, 2011, 90 (3-4) :493-514
[2]   Stationary Kirchhoff problems involving a fractional elliptic operator and a critical nonlinearity [J].
Autuori, Giuseppina ;
Fiscella, Alessio ;
Pucci, Patrizia .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2015, 125 :699-714
[3]   Elliptic problems involving the fractional Laplacian in RN [J].
Autuori, Giuseppina ;
Pucci, Patrizia .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2013, 255 (08) :2340-2362
[4]   Existence of entire solutions for a class of quasilinear elliptic equations [J].
Autuori, Giuseppina ;
Pucci, Patrizia .
NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2013, 20 (03) :977-1009
[5]   Kirchhoff systems with dynamic boundary conditions [J].
Autuori, Giuseppina ;
Pucci, Patrizia .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2010, 73 (07) :1952-1965
[6]   KIRCHHOFF SYSTEMS WITH NONLINEAR SOURCE AND BOUNDARY DAMPING TERMS [J].
Autuori, Giuseppina ;
Pucci, Patrizia .
COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2010, 9 (05) :1161-1188
[7]  
Bisci GM, 2016, ENCYCLOP MATH APPL, V162
[8]   On a fractional degenerate Kirchhoff-type problem [J].
Bisci, Giovanni Molica ;
Vilasi, Luca .
COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2017, 19 (01)
[9]   Ground state solutions of scalar field fractional Schrodinger equations [J].
Bisci, Giovanni Molica ;
Radulescu, Vicentiu D. .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2015, 54 (03) :2985-3008
[10]   On doubly nonlocal fractional elliptic equations [J].
Bisci, Giovanni Molica ;
Repovs, Dusan .
RENDICONTI LINCEI-MATEMATICA E APPLICAZIONI, 2015, 26 (02) :161-176