Structure revealing techniques based on parallel coordinates plot

被引:8
|
作者
Zhao, Xin [1 ]
Kaufman, Arie [1 ]
机构
[1] SUNY Stony Brook, Dept Comp Sci, Stony Brook, NY 11794 USA
来源
VISUAL COMPUTER | 2012年 / 28卷 / 6-8期
关键词
Parallel coordinates plot; Dimension sorting optimization; Visual representation; VISUALIZATION;
D O I
10.1007/s00371-012-0713-0
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Parallel coordinates plot (PCP) is an excellent tool for multivariate visualization and analysis, but it may fail to reveal inherent structures for complex and large datasets. Therefore, polyline clustering and coordinate sorting are inevitable for the accurate data exploration and analysis. In this paper, we propose a suite of novel clustering and dimension sorting techniques in PCP, to reveal and highlight hidden trend and correlation information of polylines. Spectrum theory is first introduced to specifically design clustering and sorting techniques for a clear view of clusters in PCP. We also provide an efficient correlation based sorting technique to optimize the ordering of coordinates to reveal correlated relations, and show how our view-range metrics, generated based on the aggregation constraints, can be used to make a clear view for easy data perception and analysis. Experimental results generated using our framework visually represent meaningful structures to guide the user, and improve the efficiency of the analysis, especially for the complex and noisy data.
引用
收藏
页码:541 / 551
页数:11
相关论文
共 50 条
  • [41] A Visual Representation of Clusters Characteristics using Edge Bundling for Parallel Coordinates
    Divino, Rodrigo S. A.
    Santos, Carlos G. R.
    Meiguins, Bianchi S.
    2017 21ST INTERNATIONAL CONFERENCE INFORMATION VISUALISATION (IV), 2017, : 90 - 95
  • [42] AutoAIViz: Opening the Blackbox of Automated Artificial Intelligence with Conditional Parallel Coordinates
    Weidele, Daniel Karl I.
    Weisz, Justin D.
    Oduor, Erick
    Muller, Michael
    Andres, Josh
    Gray, Alexander
    Wang, Dakuo
    PROCEEDINGS OF THE 25TH INTERNATIONAL CONFERENCE ON INTELLIGENT USER INTERFACES, IUI 2020, 2020, : 308 - 312
  • [43] Stars advantages vs Parallel Coordinates (shape perception as visualization reserve)
    Grishin, Vladimir
    VISUALIZATION AND DATA ANALYSIS 2014, 2014, 9017
  • [44] A Multi-task Comparative Study on Scatter Plots and Parallel Coordinates Plots
    Kanjanabose, Rassadarie
    Abdul-Rahman, Alfie
    Chen, Min
    COMPUTER GRAPHICS FORUM, 2015, 34 (03) : 261 - 270
  • [45] HiePaCo: Scalable Hierarchical Exploration in Abstract Parallel Coordinates Under Budget Constraints
    Richer, Gaelle
    Sansen, Joris
    Lalanne, Frederic
    Auber, David
    Bourqui, Romain
    BIG DATA RESEARCH, 2019, 17 : 1 - 17
  • [46] Supporting Decision Making in Engineering Design Using Parallel Coordinates in Virtual Reality
    Tadeja, Slawomir K.
    Kipouros, Timoleon
    Lu, Yupu
    Kristensson, Per Ola
    AIAA JOURNAL, 2021, 59 (12) : 5332 - 5346
  • [47] Smooth Transitions Between Parallel Coordinates and Scatter Plots via Polycurve Star Plots
    Kiesel, Dora
    Riehmann, Patrick
    Froehlich, Bernd
    COMPUTER GRAPHICS FORUM, 2023, 42 (06)
  • [48] Multi-Resolution Climate Ensemble Parameter Analysis with Nested Parallel Coordinates Plots
    Wang, Junpeng
    Liu, Xiaotong
    Shen, Han-Wei
    Lin, Guang
    IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2017, 23 (01) : 81 - 90
  • [49] Geo-Coordinated Parallel Coordinates (GCPC): A Case Study of Environmental Data Analysis
    El Meseery, Maha
    Hoeber, Orland
    DISCOVERY SCIENCE, DS 2015, 2015, 9356 : 63 - 77
  • [50] Double-Arc Parallel Coordinates and its Axes re-Ordering Methods
    Lu, Liangfu
    Wang, Wenbo
    Tan, Zhiyuan
    MOBILE NETWORKS & APPLICATIONS, 2020, 25 (04): : 1376 - 1391