Structure revealing techniques based on parallel coordinates plot

被引:8
|
作者
Zhao, Xin [1 ]
Kaufman, Arie [1 ]
机构
[1] SUNY Stony Brook, Dept Comp Sci, Stony Brook, NY 11794 USA
来源
VISUAL COMPUTER | 2012年 / 28卷 / 6-8期
关键词
Parallel coordinates plot; Dimension sorting optimization; Visual representation; VISUALIZATION;
D O I
10.1007/s00371-012-0713-0
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Parallel coordinates plot (PCP) is an excellent tool for multivariate visualization and analysis, but it may fail to reveal inherent structures for complex and large datasets. Therefore, polyline clustering and coordinate sorting are inevitable for the accurate data exploration and analysis. In this paper, we propose a suite of novel clustering and dimension sorting techniques in PCP, to reveal and highlight hidden trend and correlation information of polylines. Spectrum theory is first introduced to specifically design clustering and sorting techniques for a clear view of clusters in PCP. We also provide an efficient correlation based sorting technique to optimize the ordering of coordinates to reveal correlated relations, and show how our view-range metrics, generated based on the aggregation constraints, can be used to make a clear view for easy data perception and analysis. Experimental results generated using our framework visually represent meaningful structures to guide the user, and improve the efficiency of the analysis, especially for the complex and noisy data.
引用
收藏
页码:541 / 551
页数:11
相关论文
共 50 条
  • [31] Practical Application of Parallel Coordinates for Climate Model Analysis
    Steed, Chad A.
    Shipman, Galen
    Thornton, Peter
    Ricciuto, Daniel
    Erickson, David
    Branstetter, Marcia
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON COMPUTATIONAL SCIENCE, ICCS 2012, 2012, 9 : 877 - 886
  • [32] P-Lite: A study of parallel coordinate plot literacy
    Firat, Elif E.
    Denisova, Alena
    Wilson, Max L.
    Laramee, Robert S.
    VISUAL INFORMATICS, 2022, 6 (03) : 81 - 99
  • [33] Privacy-Preserving Data Visualization using Parallel Coordinates
    Dasgupta, Aritra
    Kosara, Robert
    VISUALIZATION AND DATA ANALYSIS 2011, 2011, 7868
  • [34] Visual Signature of High-Dimensional Geometry in Parallel Coordinates
    Yan, Xiaoqi
    Lai, Chi-Fu
    Fu, Chi-Wing
    2014 IEEE PACIFIC VISUALIZATION SYMPOSIUM (PACIFICVIS), 2014, : 65 - 72
  • [35] Applied parallel coordinates for logs and network traffic attack analysis
    Tricaud, Sebastien
    Saade, Philippe
    JOURNAL IN COMPUTER VIROLOGY AND HACKING TECHNIQUES, 2010, 6 (01): : 1 - 29
  • [36] Enhancing Visualization of Multidimensional Data by Ordering Parallel Coordinates Axes
    Nabil, Ayman
    Mohamed, Karim M.
    Kamal, Yasser M.
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2019, 10 (09) : 340 - 344
  • [37] DSPCP: A Data Scalable Approach for Identifying Relationships in Parallel Coordinates
    Hoa Nguyen
    Rosen, Paul
    IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2018, 24 (03) : 1301 - 1315
  • [38] Improving performance of Forensics Investigation with Parallel Coordinates Visual Analytics
    Wang, Wen Bo
    Huang, Mao Lin
    Lu, Liang Fu
    Zhang, Jinson
    2014 IEEE 17th International Conference on Computational Science and Engineering (CSE), 2014, : 1838 - 1843
  • [39] Augmenting Parallel Coordinates Plots With Color-Coded Stacked Histograms
    Bok, Jinwook
    Kim, Bohyoung
    Seo, Jinwook
    IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2022, 28 (07) : 2563 - 2576
  • [40] Two axes re-ordering methods in parallel coordinates plots
    Lu, Liang Fu
    Huang, Mao Lin
    Zhang, Jinson
    JOURNAL OF VISUAL LANGUAGES AND COMPUTING, 2016, 33 : 3 - 12