Structure revealing techniques based on parallel coordinates plot

被引:8
|
作者
Zhao, Xin [1 ]
Kaufman, Arie [1 ]
机构
[1] SUNY Stony Brook, Dept Comp Sci, Stony Brook, NY 11794 USA
来源
VISUAL COMPUTER | 2012年 / 28卷 / 6-8期
关键词
Parallel coordinates plot; Dimension sorting optimization; Visual representation; VISUALIZATION;
D O I
10.1007/s00371-012-0713-0
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Parallel coordinates plot (PCP) is an excellent tool for multivariate visualization and analysis, but it may fail to reveal inherent structures for complex and large datasets. Therefore, polyline clustering and coordinate sorting are inevitable for the accurate data exploration and analysis. In this paper, we propose a suite of novel clustering and dimension sorting techniques in PCP, to reveal and highlight hidden trend and correlation information of polylines. Spectrum theory is first introduced to specifically design clustering and sorting techniques for a clear view of clusters in PCP. We also provide an efficient correlation based sorting technique to optimize the ordering of coordinates to reveal correlated relations, and show how our view-range metrics, generated based on the aggregation constraints, can be used to make a clear view for easy data perception and analysis. Experimental results generated using our framework visually represent meaningful structures to guide the user, and improve the efficiency of the analysis, especially for the complex and noisy data.
引用
收藏
页码:541 / 551
页数:11
相关论文
共 50 条
  • [11] Conditional Parallel Coordinates
    Weidele, Daniel Karl I.
    2019 IEEE VISUALIZATION CONFERENCE (VIS), 2019, : 221 - 225
  • [12] Progressive Parallel Coordinates
    Rosenbaum, Rene
    Zhi, Jian
    Hamann, Bernd
    IEEE PACIFIC VISUALIZATION SYMPOSIUM 2012, 2012, : 25 - 32
  • [13] Exploratory Data Analysis of Adverse Birth Outcomes and Exposure to Oxides of Nitrogen Using Interactive Parallel Coordinates Plot Technique
    Mitku, Aweke A.
    Zewotir, Temesgen
    North, Delia
    Naidoo, Rajen N.
    SCIENTIFIC REPORTS, 2020, 10 (01)
  • [14] Features in Continuous Parallel Coordinates
    Lehmann, Dirk J.
    Theisel, Holger
    IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2011, 17 (12) : 1912 - 1921
  • [15] Parallel Bubbles: Visualization of categorical data in Parallel Coordinates
    Tuor, Raphael
    Evequoz, Florian
    Lalanne, Denis
    ACTES DE LA 28EME CONFERENCE DE L'ASSOCIATION FRANCOPHONE D'INTERACTION HOMME-MACHINE (IHM16), 2016, : 299 - 306
  • [16] Visualizing fuzzy points in parallel coordinates
    Berthold, MR
    Hall, LO
    IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2003, 11 (03) : 369 - 374
  • [17] Self-Organization in Parallel Coordinates
    Trutschl, Marjan
    Kilgore, Phillip C. S. R.
    Cvek, Urska
    ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING - ICANN 2013, 2013, 8131 : 351 - 358
  • [18] Enhancing Parallel Coordinates Visualization Using Genetic Algorithm with Smart Mutation
    Aldwib, Khiria
    Rahnamayan, Shahryar
    Ibrahim, Amin
    2020 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN, AND CYBERNETICS (SMC), 2020, : 3746 - 3752
  • [19] Comprehensible Visualization of Multidimensional Data: Sum of Ranking Differences-Based Parallel Coordinates
    Ipkovich, Adam
    Heberger, Karoly
    Abonyi, Janos
    MATHEMATICS, 2021, 9 (24)
  • [20] GPU accelerated scalable parallel coordinates plots
    Stumpfegger, Josef
    Hoehlein, Kevin
    Craig, George
    Westermann, Rudiger
    COMPUTERS & GRAPHICS-UK, 2022, 109 : 111 - 120