Comparative Labeling of Equine and Ovine Multipotent Stromal Cells With Superparamagnetic Iron Oxide Particles for Magnetic Resonance Imaging In Vitro

被引:10
|
作者
Juelke, Henriette [1 ,2 ]
Veit, Christin [1 ]
Ribitsch, Iris [1 ]
Brehm, Walter [3 ]
Ludewig, Eberhard [4 ]
Delling, Uta [3 ]
机构
[1] Univ Leipzig, Translat Ctr Regenerat Med TRM, D-04103 Leipzig, Germany
[2] FREY TOX GmbH, Herzberg, Germany
[3] Univ Leipzig, Large Anim Clin Surg, Fac Vet Med, D-04103 Leipzig, Germany
[4] Univ Leipzig, Dept Small Anim Med, Fac Vet Med, D-04103 Leipzig, Germany
关键词
Multipotent stromal cells (MSCs); Cell tracking; Superparamagnetic iron oxide (SPIO) particles; Magnetic resonance imaging; MESENCHYMAL STEM-CELLS; CONTRAST AGENTS; MRI; TRACKING; FERUMOXIDES; DIFFERENTIATION; NANOPARTICLES; PROTAMINE; VIVO; CHONDROGENESIS;
D O I
10.3727/096368913X675737
中图分类号
Q813 [细胞工程];
学科分类号
摘要
The purpose of this study was to evaluate the use of three different superparamagnetic iron oxide (SPIO) particles for labeling of ovine and equine bone marrow (BM)-derived multipotent stromal cells (MSCs) in vitro. MSCs were obtained from five adult sheep and horses, respectively. After three passages (p3), cells were labeled with either 1) Molday ION Rhodamine B, 2) Endorem, 3) Resovist, or 4) remained unlabeled as control. Labeling efficiency, marker retention, and long-term detectability in MRI until p7 were evaluated. Further, proliferation capacity and trilineage differentiation as indicators for potential impact on stromal cell characteristics were assessed. MSCs of both species were successfully labeled with all three SPIO products. A high, exclusively intracellular, iron uptake was achieved by Molday ION Rhodamine B only. Labeling with Resovist led to prominent extracellular iron presence; labeling with Endorem was less efficient. During MRI, all labeled cells showed strong hypointense signals, contrary to unlabeled controls. Resovist induced the largest areas of hypointense signals, followed by Molday ION Rhodamine B and Endorem. MRI signal detectability decreased from p4 to p7. Proliferation, adipogenic, and osteogenic differentiation potential were not reduced by cell labeling compared to unlabeled cells. Chondrogenic differentiation capacity decreased with increasing amount of iron associated with the cells. Among the three products, Resovist and Molday were identified as promising labeling agents. While Resovist achieved superior results in most of the assessed parameters, Molday ION Rhodamine B ensured intracellular iron uptake without extracellular SPIO complexes and consistent hypointense signals on MRI.
引用
收藏
页码:1111 / 1125
页数:15
相关论文
共 50 条
  • [1] Optimal conditions for dendritic cells labeling with superparamagnetic iron oxide for cellular magnetic resonance imaging
    Kobayashi, Yasunobu
    Shimizu, Koichi
    Okuyama, Ryuji
    Imai, Kenichiro
    Ohno, Satoshi
    Ostapenko, Valentina V.
    Kobayashi, Tamiyo
    Aruga, Atushi
    Tanigawa, Keishi
    CANCER RESEARCH, 2010, 70
  • [2] Phase characteristic of superparamagnetic iron oxide particles in magnetic resonance imaging
    Zhu, Haitao
    Demachi, Kazuyuki
    INTERNATIONAL JOURNAL OF APPLIED ELECTROMAGNETICS AND MECHANICS, 2010, 33 (1-2) : 721 - 726
  • [3] Phase Characteristic of Superparamagnetic Iron Oxide Particles in Magnetic Resonance Imaging
    Zhu, Haitao
    Demachi, Kazuyuki
    APPLIED ELECTROMAGNETICS AND MECHANICS (II), 2009, 13 : 283 - 284
  • [4] Superparamagnetic iron oxide particles: contrast media for magnetic resonance imaging
    Lawaczeck, R
    Menzel, M
    Pietsch, H
    APPLIED ORGANOMETALLIC CHEMISTRY, 2004, 18 (10) : 506 - 513
  • [5] Optimal Labeling Dose, Labeling Time, and Magnetic Resonance Imaging Detection Limits of Ultrasmall Superparamagnetic Iron-Oxide Nanoparticle Labeled Mesenchymal Stromal Cells
    Mathiasen, Anders Bruun
    Hansen, Louise
    Friis, Tina
    Thomsen, Carsten
    Bhakoo, Kishore
    Kastrup, Jens
    STEM CELLS INTERNATIONAL, 2013, 2013
  • [6] Magnetic resonance imaging of atherosclerotic plaques using superparamagnetic iron oxide particles
    Taupitz, M
    Schmitz, SA
    Beyersdorff, D
    Wagner, S
    Hamm III, BK
    RADIOLOGY, 2000, 217 : 286 - 286
  • [7] Magnetic resonance imaging of atherosclerotic plaques using superparamagnetic iron oxide particles
    Schmitz, SA
    Taupitz, M
    Wagner, S
    Wolf, KJ
    Beyersdorff, D
    Hamm, B
    JOURNAL OF MAGNETIC RESONANCE IMAGING, 2001, 14 (04) : 355 - 361
  • [8] Clinical cell tracking of mononuclear cells using magnetic resonance imaging and superparamagnetic particles of iron oxide
    Richards, J. M. J.
    Shaw, K. A.
    Lang, N. N.
    Semple, S. I. K.
    Crawford, J. A.
    Simpson, A. J.
    Connolly, T. A.
    Barclay, R. H.
    Turner, M.
    Newby, D. E.
    EUROPEAN HEART JOURNAL, 2010, 31 : 611 - 611
  • [9] Clinical cell tracking of mononuclear cells using magnetic resonance imaging and superparamagnetic particles of iron oxide
    Richards, J. M. J.
    Shaw, K. A.
    Lang, N. N.
    Semple, S. I. K.
    Crawford, J. A.
    Williams, M.
    Atkinson, A.
    Forrest, E.
    Mills, N. L.
    Burdess, A.
    Dhaliwal, K.
    Simpson, A. J.
    Roddie, H.
    McKillop, G.
    Connolly, T. M.
    Feuerstein, G. Z.
    Barclay, R. H.
    Turner, M.
    Newby, D. E.
    BRITISH JOURNAL OF SURGERY, 2011, 98 : 4 - 4
  • [10] The function and magnetic resonance imaging of immature dendritic cells under ultrasmall superparamagnetic iron oxide (USPIO)-labeling
    Zhang, Wei
    Zhang, Shuihua
    Xu, Wan
    Zhang, Min
    Zhou, Quan
    Chen, Wenli
    BIOTECHNOLOGY LETTERS, 2017, 39 (07) : 1079 - 1089