Combining Fast Li-Ion Battery Cycling with Large Volumetric Energy Density: Grain Boundary Induced High Electronic and Ionic Conductivity in Li4Ti5O12 Spheres of Densely Packed Nanocrystallites

被引:146
作者
Wang, Chao [1 ,4 ]
Wang, Shuan [1 ]
He, Yan-Bing [1 ]
Tang, Linkai [1 ,4 ]
Han, Cuiping [1 ,4 ]
Yang, Cheng [1 ]
Wagemaker, Marnix [2 ]
Li, Baohua [1 ]
Yang, Quan-Hong [1 ]
Kim, Jang-Kyo [3 ]
Kang, Feiyu [1 ,4 ]
机构
[1] Tsinghua Univ, Grad Sch Shenzhen, Engn Lab Next Generat Power & Energy Storage Batt, Shenzhen 518055, Peoples R China
[2] Delft Univ Technol, Dept Radiat Sci & Technol, NL-2629 JB Delft, Netherlands
[3] Hong Kong Univ Sci & Technol, Dept Mech & Aerosp Engn, Hong Kong, Hong Kong, Peoples R China
[4] Tsinghua Univ, Dept Mat Sci & Engn, Adv Mat Lab, Beijing 100084, Peoples R China
基金
中国国家自然科学基金;
关键词
IMPROVED RATE CAPABILITY; LITHIUM STORAGE; ANODE MATERIAL; CARBON; SPINEL; DIFFUSION; PERFORMANCE; NANOSHEETS; COMPOSITE; MECHANISM;
D O I
10.1021/acs.chemmater.5b02027
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
One of the key challenges toward high-power Li-ion batteries is to develop cheap, easy-to-prepare materials that combine high volumetric and gravimetric energy density with high power densities and a long cycle life. This requires electrode materials with large tap densities, which generally compromises the charge transport and hence the power density. Here densely packed Li4Ti5O12 (LTO) submicrospheres are prepared via a simple and easily up-scalable self-assembly process, resulting in very high tap densities (1.2 g.cm(-2)) and displaying exceptionally stable long-term high rate cyclic performance. The specific capacities at a (dis) charge rate of 10 and 20 C reach 148.6 and 130.1 mAh g(-1), respectively. Moreover, the capacity retention ratio is 97.3% after 500 cycles at 10 C in a half cell, and no obvious capacity reduction is found even after 8000 cycles at 30 C in a full LiFePO4/LTO battery. The excellent performance is explained by the abundant presence of grain boundaries between the nanocrystallites in the submicron spheres creating a 3D interconnected network, which allows very fast Li-ion and electron transport as indicated by the unusually large Li-ion diffusion coefficients and electronic conductivity at (6.2 x 10(-12) cm(2) s(-1) at 52% SOC and 3.8 X 10(-6) S cm(-1), respectively). This work demonstrates that, unlike in porous and nanosheet LTO structures with a high carbon content, exceptionally high rate charge transport can be combined with a large tap density and hence a large volumetric energy density, with the additional advantage of a much longer cycle life. More generally, the present results provide a promising strategy toward electrode materials combining high rate performances with high volumetric energy densities and long-term cyclic stability as required for the application in electric vehicles and tools.
引用
收藏
页码:5647 / 5656
页数:10
相关论文
共 43 条
[1]   Nanostructured Anode Material for High-Power Battery System in Electric Vehicles [J].
Amine, Khalil ;
Belharouak, Ilias ;
Chen, Zonghai ;
Tran, Taison ;
Yumoto, Hiroyuki ;
Ota, Naoki ;
Myung, Seung-Taek ;
Sun, Yang-Kook .
ADVANCED MATERIALS, 2010, 22 (28) :3052-3057
[2]   IDENTIFICATION OF SURFACE-FILMS FORMED ON LITHIUM IN PROPYLENE CARBONATE SOLUTIONS [J].
AURBACH, D ;
DAROUX, ML ;
FAGUY, PW ;
YEAGER, E .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1987, 134 (07) :1611-1620
[3]   Excellent long-term cycling stability of La-doped Li4Ti5O12 anode material at high current rates [J].
Bai, Yu-Jun ;
Gong, Chen ;
Qi, Yong-Xin ;
Lun, Ning ;
Feng, Jun .
JOURNAL OF MATERIALS CHEMISTRY, 2012, 22 (36) :19054-19060
[4]   Size Effects in the Li4+xTi5O12 Spinel [J].
Borghols, W. J. H. ;
Wagemaker, M. ;
Lafont, U. ;
Kelder, E. M. ;
Mulder, F. M. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2009, 131 (49) :17786-17792
[5]   Nanomaterials for rechargeable lithium batteries [J].
Bruce, Peter G. ;
Scrosati, Bruno ;
Tarascon, Jean-Marie .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2008, 47 (16) :2930-2946
[6]   Synthesis of Monodisperse Mesoporous Titania Beads with Controllable Diameter, High Surface Areas, and Variable Pore Diameters (14-23 nm) [J].
Chen, Dehong ;
Cao, Lu ;
Huang, Fuzhi ;
Imperia, Paolo ;
Cheng, Yi-Bing ;
Caruso, Rachel A. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2010, 132 (12) :4438-4444
[7]   Challenges Facing Lithium Batteries and Electrical Double-Layer Capacitors [J].
Choi, Nam-Soon ;
Chen, Zonghai ;
Freunberger, Stefan A. ;
Ji, Xiulei ;
Sun, Yang-Kook ;
Amine, Khalil ;
Yushin, Gleb ;
Nazar, Linda F. ;
Cho, Jaephil ;
Bruce, Peter G. .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2012, 51 (40) :9994-10024
[8]   Electrical Energy Storage for the Grid: A Battery of Choices [J].
Dunn, Bruce ;
Kamath, Haresh ;
Tarascon, Jean-Marie .
SCIENCE, 2011, 334 (6058) :928-935
[9]   Nanoscale Porous Framework of Lithium Titanate for Ultrafast Lithium Insertion [J].
Feckl, Johann M. ;
Fominykh, Ksenia ;
Doeblinger, Markus ;
Fattakhova-Rohlfing, Dina ;
Bein, Thomas .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2012, 51 (30) :7459-7463
[10]   Electronic and Ionic Wirings Versus the Insertion Reaction Contributions to the Polarization in LiFePO4 Composite Electrodes [J].
Fongy, C. ;
Jouanneau, S. ;
Guyomard, D. ;
Badot, J. C. ;
Lestriez, B. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2010, 157 (12) :A1347-A1353