Texture Enhancing Based on Variational Image Decomposition

被引:2
作者
Fruehauf, Florian
Pontow, Carsten [2 ]
Scherzer, Otmar [1 ,2 ]
机构
[1] Austrian Acad Sci, Radon Inst Computat & Math, Altenberger Str 69, A-4040 Linz, Austria
[2] Univ Vienna, Ctr Comp Sci, A-1090 Vienna, Austria
来源
MATHEMATICAL IMAGE PROCESSING | 2011年 / 5卷
基金
奥地利科学基金会;
关键词
Image decomposition; Image enhancement; Anisotropic diffusion; texture; Curvelets; Total variation; TOTAL VARIATION MINIMIZATION; BOUNDED VARIATION; RESTORATION;
D O I
10.1007/978-3-642-19604-1_7
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper we consider the Augmented Lagrangian Method for image decomposition. We propose a method which decomposes an image into texture, which is characterized to have finite l(1) curvelet coefficients, a cartoon part, which has finite total variation norm, and noise and oscillating patterns, which have finite G-norm. In the second part of the paper we utilize the equivalence of the Augmented Lagrangian Method and the iterative Bregman distance regularization to show that the dual variables can be used for enhancing of particular components. We concentrate on the enhancing feature for the texture and propose two different variants of the Augmented Lagrangian Method for decomposition and enhancing.
引用
收藏
页码:127 / +
页数:3
相关论文
共 50 条
  • [21] Fast Cartoon plus Texture Image Filters
    Buades, Antoni
    Le, Triet M.
    Morel, Jean-Michel
    Vese, Luminita A.
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2010, 19 (08) : 1978 - 1986
  • [22] Coupled Variational Image Decomposition and Restoration Model for Blurred Cartoon-Plus-Texture Images With Missing Pixels
    Ng, Michael K.
    Yuan, Xiaoming
    Zhang, Wenxing
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2013, 22 (06) : 2233 - 2246
  • [23] Variational Image Decomposition in Shearlet Smoothness Spaces
    Li, Min
    Sun, Xiaoli
    Xu, Chen
    2014 TENTH INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE AND SECURITY (CIS), 2014, : 352 - 355
  • [24] Structure-Texture Image Decomposition Using Deep Variational Priors
    Kim, Youngjung
    Ham, Bumsub
    Do, Minh N.
    Sohn, Kwanghoon
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2019, 28 (06) : 2692 - 2704
  • [25] Infrared Polarization Image Texture Extraction via Variational Decomposition Algorithm
    Zhang Weiguo
    Zhang Jingjing
    Xun Lina
    Wang Feng
    Yuan Hongwu
    Yan Qing
    Shi Kaili
    SELECTED PAPERS OF THE PHOTOELECTRONIC TECHNOLOGY COMMITTEE CONFERENCES, 2015, 9795
  • [26] Second-order Variational Models for Image Texture Analysis
    Bergounioux, Maitine
    ADVANCES IN IMAGING AND ELECTRON PHYSICS, VOL 181, 2014, 181 : 35 - 124
  • [27] Fractional-order Variational Regularization for Image Decomposition
    Jiang, Lingling
    Yin, Haiqing
    2014 19TH INTERNATIONAL CONFERENCE ON DIGITAL SIGNAL PROCESSING (DSP), 2014, : 24 - 29
  • [28] Euler's Elastica-Based Cartoon-Smooth-Texture Image Decomposition
    He, Roy Y.
    Liu, Hao
    SIAM JOURNAL ON IMAGING SCIENCES, 2025, 18 (01): : 526 - 569
  • [29] Cartoon and Texture Image Decomposition Driven by Weighted Curvature
    Shang, Wanqing
    Xu, Jianlou
    Guo, Yuying
    IEEE ACCESS, 2021, 9 : 133531 - 133540
  • [30] Image Restoration Based on Structure and Texture Decomposition
    Zhang, Qiong
    Shen, Minfen
    Li, Bin
    PROCEEDINGS OF THE 2019 IEEE 18TH INTERNATIONAL CONFERENCE ON COGNITIVE INFORMATICS & COGNITIVE COMPUTING (ICCI*CC 2019), 2019, : 217 - 221