Pore-scale characteristics of multiphase flow in porous media: A comparison of air-water and oil-water experiments

被引:154
|
作者
Culligan, KA
Wildenschild, D [1 ]
Christensen, BSB
Gray, WG
Rivers, ML
机构
[1] Oregon State Univ, Dept Civil Construct & Environm Engn, Dept Geosci, Corvallis, OR 97331 USA
[2] Univ Notre Dame, Dept Civil Engn & Geol Sci, Notre Dame, IN 46556 USA
[3] Tech Univ Denmark, DK-2800 Lyngby, Denmark
[4] Univ N Carolina, Dept Environm Sci & Engn, Chapel Hill, NC 27599 USA
[5] Univ Chicago, Consortium Adv Radiat Sources, Chicago, IL 60637 USA
[6] Univ Chicago, Dept Geophys Sci, Chicago, IL 60637 USA
基金
美国国家科学基金会;
关键词
multi-phase flow; NAPLs; porous media; microtomography; Interfacial areas; capillary pressure-saturation curves;
D O I
10.1016/j.advwatres.2005.03.021
中图分类号
TV21 [水资源调查与水利规划];
学科分类号
081501 ;
摘要
Studies of NAPL dissolution in porous media have demonstrated that measurement of saturation alone is insufficient to describe the rate of dissolution. Quantification of the NAPL-water interfacial area provides a measure of the expected area available for mass transfer and will likely be a primary determinant of NAPL removal efficiency. To measure the interfacial area, we have used a synchrotron-based CMT technique to obtain high-resolution 3D images of flow in a Soltrol-water glass bead system. The interfacial area is found to increase as the wetting phase saturation decreases, reach a maximum, and then decrease as the wetting phase saturation goes to zero. These results are compared to previous findings for an air-water-glass bead study; The Soltrol-water interfacial areas were found to peak at similar saturations as those measured for the air-water system (20-35% saturation range), however, the peak values were in some cases almost twice Lis high for the oil-water system. We believe that the observed differences between the air-water and oil-water systems to a large degree can be explained by the differences in interfacial tensions for the two systems. (C) 2005 Elsevier Ltd. All rights reserved.
引用
收藏
页码:227 / 238
页数:12
相关论文
共 50 条
  • [41] Pore-scale modelling and sensitivity analyses of hydrogen-brine multiphase flow in geological porous media
    Hashemi, Leila
    Blunt, Martin
    Hajibeygi, Hadi
    SCIENTIFIC REPORTS, 2021, 11 (01)
  • [42] Adsorption and Desorption of Bile Salts at Air-Water and Oil-Water Interfaces
    del Castillo-Santaella, Teresa
    Maldonado-Valderrama, Julia
    COLLOIDS AND INTERFACES, 2023, 7 (02)
  • [43] Interfacial behavior of alkaline protease at the air-water and oil-water interfaces
    Zhang, Jian
    Li, Yanyan
    Wang, Jing
    Zhang, Yue
    APPLIED SURFACE SCIENCE, 2018, 433 : 1128 - 1136
  • [44] Pore-scale statistics of flow and transport through porous media
    Aramideh, Soroush
    Vlachos, Pavlos P.
    Ardekani, Arezoo M.
    PHYSICAL REVIEW E, 2018, 98 (01)
  • [45] Parallel simulations of pore-scale flow through porous media
    Morris, JP
    Zhu, Y
    Fox, PJ
    COMPUTERS AND GEOTECHNICS, 1999, 25 (04) : 227 - 246
  • [46] Adsorption of soy protein isolate at air-water and oil-water interfaces
    Santiago, Liliana G.
    Maldonado-Valderrama, Julia
    Martin-Molina, Alberto
    Haro-Perez, Catalina
    Garcia-Martinez, Joaquin
    Martin-Rodriguez, Antonio
    Cabrerizo-Vilchez, Miguel A.
    Galvez-Ruiz, Maria Jose
    COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 2008, 323 (1-3) : 155 - 162
  • [47] INTERACTION BETWEEN LECITHINS AND CHOLESTEROL AT AIR-WATER AND OIL-WATER INTERFACES
    DEMEL, RA
    JOOS, P
    CHEMISTRY AND PHYSICS OF LIPIDS, 1968, 2 (01) : 35 - &
  • [48] Experimental analysis of pore-scale flow and transport in porous media
    Rashidi, M
    Peurrung, L
    Tompson, AFB
    Kulp, TJ
    ADVANCES IN WATER RESOURCES, 1996, 19 (03) : 163 - 180
  • [49] Pore-scale Distribution Characteristics of Gas Hydrate in Porous Media
    Kou, Xuan
    Wang, Yi
    Li, Xiao-Sen
    Kung Cheng Je Wu Li Hsueh Pao/Journal of Engineering Thermophysics, 2020, 41 (11): : 2658 - 2661
  • [50] A pore-scale numerical model for flow through porous media
    Zhu, Y
    Fox, PJ
    Morris, JP
    INTERNATIONAL JOURNAL FOR NUMERICAL AND ANALYTICAL METHODS IN GEOMECHANICS, 1999, 23 (09) : 881 - 904