Generalized N=2 topological amplitudes and holomorphic anomaly equation

被引:7
|
作者
Antoniadis, I. [2 ]
Hohenegger, S. [1 ]
Narain, K. S. [3 ]
Sokatchev, E. [2 ,4 ,5 ]
机构
[1] Max Planck Inst Phys & Astrophys, Werner Heisenberg Inst, D-80805 Munich, Germany
[2] CERN, Div Theory, Dept Phys, CH-1211 Geneva 23, Switzerland
[3] Abdus Salam Int Ctr Theoret Phys, High Energy Sect, I-1134014 Trieste, Italy
[4] Inst Univ France, F-75005 Paris, France
[5] Univ Savoie, CNRS, LAPTH, F-74941 Annecy Le Vieux, France
关键词
COUPLINGS; COMPLEX; MATTER;
D O I
10.1016/j.nuclphysb.2011.11.011
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
In arXiv:0905.3629 we described a new class of N = 2 topological amplitudes that depends both on vector and hypermultiplet moduli. Here we find that this class is actually a particular case of much more general topological amplitudes which appear at higher loops in heterotic string theory compactified on K3 x T-2. We analyze their effective field theory interpretation and derive particular (first order) differential equations as a consequence of supersymmetry Ward identities and the 1/2-BPS nature of the corresponding effective action terms. In string theory the latter get modified due to anomalous world-sheet boundary contributions, generalizing in a non-trivial way the familiar holomorphic and harmonicity anomalies studied in the past. We prove by direct computation that the subclass of topological amplitudes studied in arXiv:0905.3629 forms a closed set under these anomaly equations and that these equations are integrable. (C) 2011 Elsevier B.V. All rights reserved.
引用
收藏
页码:360 / 412
页数:53
相关论文
共 50 条
  • [1] Extended holomorphic anomaly and loop amplitudes in open topological string
    Walcher, Johannes
    NUCLEAR PHYSICS B, 2009, 817 (03) : 167 - 207
  • [2] The holomorphic anomaly of topological strings
    Becchi, C
    Giusto, S
    Imbimbo, C
    FORTSCHRITTE DER PHYSIK-PROGRESS OF PHYSICS, 1999, 47 (1-3): : 195 - 200
  • [3] N=1 supersymmetric one-loop amplitudes and the holomorphic anomaly of unitarity cuts
    Bidder, SJ
    Bjerrum-Bohr, NEJ
    Dixon, LJ
    Dunbar, DC
    PHYSICS LETTERS B, 2005, 606 (1-2) : 189 - 201
  • [4] Gauge theory amplitudes in twistor space and holomorphic anomaly
    Cachazo, F
    Svrcek, P
    Witten, E
    JOURNAL OF HIGH ENERGY PHYSICS, 2004, (10):
  • [5] Topological strings, contact terms and the holomorphic anomaly
    Becchi, C
    Giusto, S
    Imbimbo, C
    QUANTUM ASPECTS OF GAUGE THEORIES, SUPERSYMMETRY AND UNIFICATION, 1999, 525 : 483 - 492
  • [6] Stable quotients and the holomorphic anomaly equation
    Lho, Hyenho
    Pandharipande, Rahul
    ADVANCES IN MATHEMATICS, 2018, 332 : 349 - 402
  • [7] BCOV ring and holomorphic anomaly equation
    Hosono, Shinobu
    NEW DEVELOPMENTS IN ALGEBRAIC GEOMETRY, INTEGRABLE SYSTEMS AND MIRROR SYMMETRY (RIMS, KYOTO, 2008), 2010, 59 : 79 - 110
  • [8] A new class of N=2 topological amplitudes
    Antoniadis, I.
    Hohenegger, S.
    Narain, K. S.
    Sokatchev, E.
    NUCLEAR PHYSICS B, 2009, 823 (03) : 448 - 508
  • [9] N=2☆ from topological amplitudes in string theory
    Florakis, Ioannis
    Assi, Ahmad Zein
    NUCLEAR PHYSICS B, 2016, 909 : 480 - 506
  • [10] Comments on the holomorphic anomaly in open topological string theory
    Cook, Paul L. H.
    Ooguri, Hirosi
    Yang, Jie
    PHYSICS LETTERS B, 2007, 653 (2-4) : 335 - 337