Flexible Ion-Conducting Composite Membranes for Lithium Batteries

被引:108
作者
Aetukuri, Nagaphani B. [1 ]
Kitajima, Shintaro [2 ]
Jung, Edward [1 ]
Thompson, Leslie E. [1 ]
Virwani, Kumar [1 ]
Reich, Maria-Louisa [3 ]
Kunze, Miriam [3 ]
Schneider, Meike [3 ]
Schmidbauer, Wolfgang [3 ]
Wilcke, Winfried W. [1 ]
Bethune, Donald S. [1 ]
Scott, J. Campbell [1 ]
Miller, Robert D. [1 ]
Kim, Ho-Cheol [1 ]
机构
[1] IBM Res, San Jose, CA 95120 USA
[2] Asahi Kasei Corp, Fuji, Shizuoka 4168501, Japan
[3] SCHOTT AG, D-55122 Mainz, Germany
关键词
lithium batteries; ion-conducting membranes; composite membranes; solid-state batteries; dendrite resistance; POLYMER ELECTROLYTES; DEPOSITION; GROWTH;
D O I
10.1002/aenm.201500265
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The use of metallic lithium anodes enables higher energy density and higher specific capacity Li-based batteries. However, it is essential to suppress lithium dendrite growth during electrodeposition. Li-ion-conducting ceramics (LICC) can mechanically suppress dendritic growth but are too fragile and also have low Li-ion conductivity. Here, a simple, versatile, and scalable procedure for fabricating flexible Li-ion-conducting composite membranes composed of a single layer of LICC particles firmly embedded in a polymer matrix with their top and bottom surfaces exposed to allow for ionic transport is described. The membranes are thin (<100 m) and possess high Li-ion conductance at thicknesses where LICC disks are mechanically unstable. It is demonstrated that these membranes suppress Li dendrite growth even when the shear modulus of the matrix is lower than that of lithium. It is anticipated that these membranes enable the use of metallic lithium anodes in conventional and solid-state Li-ion batteries as well as in future LiS and LiO2 batteries.
引用
收藏
页数:6
相关论文
共 39 条
  • [1] Aetukuri NB, 2015, NAT CHEM, V7, P50, DOI [10.1038/NCHEM.2132, 10.1038/nchem.2132]
  • [2] Building better batteries
    Armand, M.
    Tarascon, J. -M.
    [J]. NATURE, 2008, 451 (7179) : 652 - 657
  • [3] On the Surface Chemical Aspects of Very High Energy Density, Rechargeable Li-Sulfur Batteries
    Aurbach, Doron
    Pollak, Elad
    Elazari, Ran
    Salitra, Gregory
    Kelley, C. Scordilis
    Affinito, John
    [J]. JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2009, 156 (08) : A694 - A702
  • [4] KINETIC ANISOTROPY AND DENDRITIC GROWTH IN ELECTROCHEMICAL DEPOSITION
    BARKEY, D
    OBERHOLTZER, F
    WU, Q
    [J]. PHYSICAL REVIEW LETTERS, 1995, 75 (16) : 2980 - 2983
  • [5] BATTERIES A stable lithium metal interface
    Bouchet, Renaud
    [J]. NATURE NANOTECHNOLOGY, 2014, 9 (08) : 572 - 573
  • [6] Bruce P. G., 2014, LITHIUM AIR BATTERIE
  • [7] Bruce PG, 2012, NAT MATER, V11, P19, DOI [10.1038/nmat3191, 10.1038/NMAT3191]
  • [8] Rechargeable Li//Br battery: a promising platform for post lithium ion batteries
    Chang, Zheng
    Wang, Xujiong
    Yang, Yaqiong
    Gao, Jie
    Li, Minxia
    Liu, Lili
    Wu, Yuping
    [J]. JOURNAL OF MATERIALS CHEMISTRY A, 2014, 2 (45) : 19444 - 19450
  • [9] Chen YH, 2013, NAT CHEM, V5, P489, DOI [10.1038/NCHEM.1646, 10.1038/nchem.1646]
  • [10] A Critical Review of Li/Air Batteries
    Christensen, Jake
    Albertus, Paul
    Sanchez-Carrera, Roel S.
    Lohmann, Timm
    Kozinsky, Boris
    Liedtke, Ralf
    Ahmed, Jasim
    Kojic, Aleksandar
    [J]. JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2012, 159 (02) : R1 - R30