On first zero crossing points

被引:2
作者
Wolfe, MA [1 ]
机构
[1] Univ St Andrews, Sch Math & Stat, St Andrews KY16 9SS, Fife, Scotland
关键词
interval mathematics; automatic derivative and slope arithmetic; the interval Newton operator;
D O I
10.1016/S0096-3003(03)00285-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Three algorithms, FZ1, FZ2 and FZ3 for bounding the first zero crossing point of a set of univariate functions on a bounded closed interval are described. Extended interval arithmetic is used in both FZ2 and FZ3. Automatic derivative arithmetic is used in FZ2 and automatic slope arithmetic is used in FZ3. Numerical results are presented. (C) 2003 Elsevier Inc. All rights reserved.
引用
收藏
页码:467 / 479
页数:13
相关论文
共 15 条
  • [1] Alefeld G., 1983, INTRO INTERVAL COMPU
  • [2] [Anonymous], NUMERICAL TOOLBOX VE
  • [3] Robust and efficient ray intersection of implicit surfaces
    Caprani, Ole
    Hvidegaard, Lars
    Mortensen, Mikkel
    Schneider, Thomas
    [J]. 2000, Kluwer Academic Publishers, Dordrecht, Netherlands (06) : 9 - 21
  • [4] Casado L. G., 2000, Reliable Computing, V6, P179, DOI 10.1023/A:1009917222929
  • [5] CASADO LG, UNPUB INTERVAL ALGOR
  • [6] Daponte P., 1996, Measurement, V19, P29, DOI 10.1016/S0263-2241(96)00059-0
  • [7] Daponte P., 1995, Measurement, V16, P37, DOI 10.1016/0263-2241(95)00016-E
  • [8] Hansen Eldon R., 1992, Global optimization using interval analysis
  • [9] KEARFOOT RB, 1996, RIGOROUS GLOBAL SEAR
  • [10] Mitchell D. P., 1990, Proceedings. Graphics Interface '90, P68