Bogdanov-Takens bifurcation in a predator-prey model

被引:12
|
作者
Liu, Zhihua [1 ]
Magal, Pierre [2 ,3 ]
Xiao, Dongmei [4 ]
机构
[1] Beijing Normal Univ, Sch Math Sci, Beijing 100875, Peoples R China
[2] Univ Bordeaux, IMB, UMR 5251, F-33400 Talence, France
[3] CNRS, IMB, UMR 5251, F-33400 Talence, France
[4] Shanghai Jiao Tong Univ, Dept Math, MOE LSC, Shanghai 200240, Peoples R China
来源
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK | 2016年 / 67卷 / 06期
关键词
Predator-prey model; Age structure; Normal forms; Non-densely defined; Bogdanov-Takens bifurcation; NORMAL FORMS; DIFFERENTIAL-EQUATIONS; HOPF-BIFURCATION; SYSTEM; OSCILLATIONS; STABILITY; DELAY;
D O I
10.1007/s00033-016-0724-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we investigate a class of predator-prey model with age structure and discuss whether the model can undergo Bogdanov-Takens bifurcation. The analysis is based on the normal form theory and the center manifold theory for semilinear equations with non-dense domain combined with integrated semigroup theory. Qualitative analysis indicates that there exist some parameter values such that this predator-prey model has an unique positive equilibrium which is Bogdanov-Takens singularity. Moreover, it is shown that under suitable small perturbation, the system undergoes the Bogdanov-Takens bifurcation in a small neighborhood of this positive equilibrium.
引用
收藏
页数:29
相关论文
共 50 条
  • [41] Bifurcation Analysis of a Predator-Prey Model with Alternative Prey and Prey Refuges
    Cui, Wenzhe
    Zhao, Yulin
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2024, 34 (02):
  • [42] Explicit transversality conditions and local bifurcation diagrams for Bogdanov-Takens bifurcation on center manifolds
    Li, Yang
    Kokubu, Hiroshi
    Aihara, Kazuyuki
    PHYSICA D-NONLINEAR PHENOMENA, 2019, 391 : 52 - 65
  • [43] Takens-Bogdanov Bifurcation for a Ratio-Dependent Predation Interaction Involving Prey-Competition and Predator-Age
    Yang, Peng
    QUALITATIVE THEORY OF DYNAMICAL SYSTEMS, 2023, 22 (04)
  • [44] HOPF BIFURCATION IN A DIFFUSIVE PREDATOR-PREY MODEL WITH HERD BEHAVIOR AND PREY HARVESTING
    Jiang, Heping
    Tang, Xiaosong
    JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2019, 9 (02): : 671 - 690
  • [45] Hopf bifurcation in a delayed reaction diffusion predator-prey model with weak Allee effect on prey and fear effect on predator
    Wang, Fatao
    Yang, Ruizhi
    Xie, Yining
    Zhao, Jing
    AIMS MATHEMATICS, 2023, 8 (08): : 17719 - 17743
  • [46] Stabilization and positioning control of a rolling disk by using the Bogdanov-Takens bifurcation
    Polo, Manuel F. Perez
    Molina, Manuel Perez
    Chica, Javier Gil
    PHYSICA D-NONLINEAR PHENOMENA, 2012, 241 (17) : 1450 - 1469
  • [47] Bogdanov-Takens bifurcation in a tri-neuron BAM neural network model with multiple delays
    Dong, Tao
    Liao, Xiaofeng
    NONLINEAR DYNAMICS, 2013, 71 (03) : 583 - 595
  • [48] Bifurcation Analysis of a Predator-Prey Model with Age Structure
    Cai, Yuting
    Wang, Chuncheng
    Fan, Dejun
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2020, 30 (08):
  • [49] STABILITY AND BIFURCATION IN A PREDATOR-PREY MODEL WITH PREY REFUGE
    Chen, Wenchang
    Yu, Hengguo
    Dai, Chuanjun
    Guo, Qing
    Liu, He
    Zhao, Min
    JOURNAL OF BIOLOGICAL SYSTEMS, 2023, 31 (02) : 417 - 435
  • [50] Analysis of the Bogdanov-Takens bifurcation in a retarded oscillator with negative damping and double delay
    Sarwardi, Sahabuddin
    Hossain, Sajjad
    Sajid, Mohammad
    Almohaimeed, Ahmed S.
    AIMS MATHEMATICS, 2022, 7 (11): : 19770 - 19793