Bogdanov-Takens bifurcation in a predator-prey model

被引:12
|
作者
Liu, Zhihua [1 ]
Magal, Pierre [2 ,3 ]
Xiao, Dongmei [4 ]
机构
[1] Beijing Normal Univ, Sch Math Sci, Beijing 100875, Peoples R China
[2] Univ Bordeaux, IMB, UMR 5251, F-33400 Talence, France
[3] CNRS, IMB, UMR 5251, F-33400 Talence, France
[4] Shanghai Jiao Tong Univ, Dept Math, MOE LSC, Shanghai 200240, Peoples R China
来源
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK | 2016年 / 67卷 / 06期
关键词
Predator-prey model; Age structure; Normal forms; Non-densely defined; Bogdanov-Takens bifurcation; NORMAL FORMS; DIFFERENTIAL-EQUATIONS; HOPF-BIFURCATION; SYSTEM; OSCILLATIONS; STABILITY; DELAY;
D O I
10.1007/s00033-016-0724-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we investigate a class of predator-prey model with age structure and discuss whether the model can undergo Bogdanov-Takens bifurcation. The analysis is based on the normal form theory and the center manifold theory for semilinear equations with non-dense domain combined with integrated semigroup theory. Qualitative analysis indicates that there exist some parameter values such that this predator-prey model has an unique positive equilibrium which is Bogdanov-Takens singularity. Moreover, it is shown that under suitable small perturbation, the system undergoes the Bogdanov-Takens bifurcation in a small neighborhood of this positive equilibrium.
引用
收藏
页数:29
相关论文
共 50 条