CAUSAL INFERENCE FOR THE EFFECT OF MOBILITY ON COVID-19 DEATHS

被引:6
作者
Bonvini, Matteo [1 ]
Kennedy, Edward H. [1 ]
Ventura, Valerie [1 ]
Wasserman, Larry [1 ]
机构
[1] Carnegie Mellon Univ, Dept Stat & Data Sci, Pittsburgh, PA 15213 USA
关键词
Causal inference; marginal structural model; Covid-19; MODELS; SHAPE;
D O I
10.1214/22-AOAS1599
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper we develop statistical methods for causal inference in epi-demics. Our focus is in estimating the effect of social mobility on deaths in the first year of the Covid-19 pandemic. We propose a marginal structural model motivated by a basic epidemic model. We estimate the counterfactual time series of deaths under interventions on mobility. We conduct several types of sensitivity analyses. We find that the data support the idea that reduced mo-bility causes reduced deaths, but the conclusion comes with caveats. There is evidence of sensitivity to model misspecification and unmeasured confound-ing which implies that the size of the causal effect needs to be interpreted with caution. While there is little doubt the effect is real, our work highlights the challenges in drawing causal inferences from pandemic data.
引用
收藏
页码:2458 / 2480
页数:23
相关论文
共 30 条
[21]  
Rosenbaum PR, 2010, SPRINGER SER STAT, P1, DOI 10.1007/978-1-4419-1213-8
[22]  
Scott JA, 2021, Arxiv, DOI [arXiv:2110.12461, 10.48550/arxiv.2110.12461, DOI 10.48550/ARXIV.2110.12461]
[23]   Immunopathological characteristics of coronavirus disease 2019 cases in Guangzhou, China [J].
Tan, Mingkai ;
Liu, Yanxia ;
Zhou, Ruiping ;
Deng, Xilong ;
Li, Fang ;
Liang, Kaiyan ;
Shi, Yaling .
IMMUNOLOGY, 2020, 160 (03) :261-268
[24]  
Tsiatis AA., 2006, Semiparametric Theory and Missing Data, V2
[25]   State-level tracking of COVID-19 in the United States [J].
Unwin, H. Juliette T. ;
Mishra, Swapnil ;
Bradley, Valerie C. ;
Gandy, Axel ;
Mellan, Thomas A. ;
Coupland, Helen ;
Ish-Horowicz, Jonathan ;
Vollmer, Michaela A. C. ;
Whittaker, Charles ;
Filippi, Sarah L. ;
Xi, Xiaoyue ;
Monod, Melodie ;
Ratmann, Oliver ;
Hutchinson, Michael ;
Valka, Fabian ;
Zhu, Harrison ;
Hawryluk, Iwona ;
Milton, Philip ;
Ainslie, Kylie E. C. ;
Baguelin, Marc ;
Boonyasiri, Adhiratha ;
Brazeau, Nick F. ;
Cattarino, Lorenzo ;
Cucunuba, Zulma ;
Cuomo-Dannenburg, Gina ;
Dorigatti, Ilaria ;
Eales, Oliver D. ;
Eaton, Jeffrey W. ;
van Elsland, Sabine L. ;
FitzJohn, Richard G. ;
Gaythorpe, Katy A. M. ;
Green, William ;
Hinsley, Wes ;
Jeffrey, Benjamin ;
Knock, Edward ;
Laydon, Daniel J. ;
Lees, John ;
Nedjati-Gilani, Gemma ;
Nouvellet, Pierre ;
Okell, Lucy ;
Parag, Kris, V ;
Siveroni, Igor ;
Thompson, Hayley A. ;
Walker, Patrick ;
Walters, Caroline E. ;
Watson, Oliver J. ;
Whittles, Lilith K. ;
Ghani, Azra C. ;
Ferguson, Neil M. ;
Riley, Steven .
NATURE COMMUNICATIONS, 2020, 11 (01)
[26]   Structural Nested Models and G-estimation: The Partially Realized Promise [J].
Vansteelandt, Stijn ;
Joffe, Marshall .
STATISTICAL SCIENCE, 2014, 29 (04) :707-731
[27]   Mobile device data reveal the dynamics in a positive relationship between human mobility and COVID-19 infections [J].
Xiong, Chenfeng ;
Hu, Songhua ;
Yang, Mofeng ;
Luo, Weiyu ;
Zhang, Lei .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2020, 117 (44) :27087-27089
[28]  
Yadlowsky S, 2022, Arxiv, DOI arXiv:1808.09521
[29]   Sensitivity analysis for inverse probability weighting estimators via the percentile bootstrap [J].
Zhao, Qingyuan ;
Small, Dylan S. ;
Bhattacharya, Bhaswar B. .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2019, 81 (04) :735-761
[30]  
Zhou X, 2019, Arxiv, DOI arXiv:1807.10869