Generation of Charged Nanoparticles during the Synthesis of GaN Nanostructures by Atmospheric-Pressure Chemical Vapor Deposition

被引:11
|
作者
Lee, Sung-Soo [1 ]
Kim, Chan-Soo [1 ]
Hwang, Nong-Moon [1 ]
机构
[1] Seoul Natl Univ, Dept Mat Sci & Engn, Seoul 151744, South Korea
关键词
GALLIUM NITRIDE; CARBON CLUSTERS; THERMODYNAMIC APPROACH; PARTICLE GENERATION; PHASE NUCLEATION; FILM FORMATION; THIN-FILMS; DIAMOND; SILICON; GROWTH;
D O I
10.1080/02786826.2012.693977
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
The possibility that GaN charged nanoparticles might be generated during the synthesis of GaN nanostructures was examined in an atmospheric-pressure chemical vapor deposition (CVD) process using a differential mobility analyzer combined with a Faraday cup electrometer. Both positively and negatively charged nanoparticles in the size range of 10-100 nm were generated in the reactor of the CVD process using Ga2O3 precursor and NH3 gas. With decreasing flow rate of NH3 from 400 to 0 standard cubic centimeter per min (sccm) and decreasing reactor temperature from 1100 degrees C to 500 degrees C, the size and the number concentration of charged nanoparticles decreased. As the size and the number density decreased, the size of deposited GaN hexagonal crystals decreased and eventually GaN nanowires began to grow without catalysts.
引用
收藏
页码:1100 / 1108
页数:9
相关论文
共 50 条
  • [32] Ethylene for carbon doping of GaN by atmospheric pressure metal organic chemical vapor deposition
    Zhang, Li
    Dong, Zhongyuan
    Deng, Xuguang
    Zhou, Xin
    Xu, Kun
    Yang, Feng
    Yu, Guohao
    Zhang, Xiaodong
    Fan, Yaming
    Zeng, Zhongming
    Wei, Zhipeng
    Zhang, Baoshun
    MATERIALS LETTERS, 2023, 345
  • [33] Atmospheric-pressure plasma-enhanced chemical vapor deposition of nanocomposite thin films from ethyl lactate and silica nanoparticles
    Milaniak, Natalia
    Laroche, Gaetan
    Massines, Francoise
    PLASMA PROCESSES AND POLYMERS, 2021, 18 (02)
  • [34] Evaluation of parameters in atmospheric-pressure chemical vapor deposition of borophosphosilicate glass using tetraethylorthosilicate and ozone
    Nishimoto, Y
    Tokumasu, N
    Maeda, K
    JAPANESE JOURNAL OF APPLIED PHYSICS PART 2-LETTERS, 2001, 40 (10B): : L1078 - L1080
  • [35] Atmospheric-pressure chemical vapor deposition of fluorine-doped tin oxide thin films
    Suh, SG
    Zhang, ZH
    Chu, WK
    Hoffman, DM
    THIN SOLID FILMS, 1999, 345 (02) : 240 - 243
  • [36] Preparation and characterization of epitaxial MgO thin film by atmospheric-pressure metalorganic chemical vapor deposition
    Zeng, JM
    Wang, H
    Shang, SX
    Wang, Z
    Wang, M
    JOURNAL OF CRYSTAL GROWTH, 1996, 169 (03) : 474 - 479
  • [37] ATOMIC ORDERING IN INGAASP AND INGAAS GROWN BY ATMOSPHERIC-PRESSURE METALORGANIC CHEMICAL VAPOR-DEPOSITION
    CHU, SNG
    LOGAN, RA
    TANBUNEK, T
    JOURNAL OF APPLIED PHYSICS, 1992, 72 (09) : 4118 - 4124
  • [38] SI DELTA-DOPED FET BY ATMOSPHERIC-PRESSURE METALORGANIC CHEMICAL VAPOR-DEPOSITION
    PAN, N
    CARTER, J
    JACKSON, GS
    HENDRIKS, H
    HUANG, JC
    ZHENG, XL
    INSTITUTE OF PHYSICS CONFERENCE SERIES, 1990, (112): : 401 - 406
  • [39] LOW-TEMPERATURE ATMOSPHERIC-PRESSURE CHEMICAL VAPOR-DEPOSITION OF TITANIUM DISULFIDE FILMS
    WINTER, CH
    LEWKEBANDARA, TS
    PROSCIA, JW
    CHEMISTRY OF MATERIALS, 1992, 4 (06) : 1144 - 1146
  • [40] Mixed phase iron oxides thin layers by atmospheric-pressure chemical vapor deposition method
    Parra-Elizondo, Vladimir
    Cuentas-Gallegos, Ana Karina
    Pacheco-Catalan, Daniella
    METHODSX, 2024, 13