Generation of Charged Nanoparticles during the Synthesis of GaN Nanostructures by Atmospheric-Pressure Chemical Vapor Deposition

被引:11
作者
Lee, Sung-Soo [1 ]
Kim, Chan-Soo [1 ]
Hwang, Nong-Moon [1 ]
机构
[1] Seoul Natl Univ, Dept Mat Sci & Engn, Seoul 151744, South Korea
关键词
GALLIUM NITRIDE; CARBON CLUSTERS; THERMODYNAMIC APPROACH; PARTICLE GENERATION; PHASE NUCLEATION; FILM FORMATION; THIN-FILMS; DIAMOND; SILICON; GROWTH;
D O I
10.1080/02786826.2012.693977
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
The possibility that GaN charged nanoparticles might be generated during the synthesis of GaN nanostructures was examined in an atmospheric-pressure chemical vapor deposition (CVD) process using a differential mobility analyzer combined with a Faraday cup electrometer. Both positively and negatively charged nanoparticles in the size range of 10-100 nm were generated in the reactor of the CVD process using Ga2O3 precursor and NH3 gas. With decreasing flow rate of NH3 from 400 to 0 standard cubic centimeter per min (sccm) and decreasing reactor temperature from 1100 degrees C to 500 degrees C, the size and the number concentration of charged nanoparticles decreased. As the size and the number density decreased, the size of deposited GaN hexagonal crystals decreased and eventually GaN nanowires began to grow without catalysts.
引用
收藏
页码:1100 / 1108
页数:9
相关论文
共 50 条
  • [21] Hydrogen-excluded graphene synthesis via atmospheric pressure chemical vapor deposition
    Shin, Yong Cheol
    Kong, Jing
    CARBON, 2013, 59 : 439 - 447
  • [22] The influence of residual oxidizing impurities on the synthesis of graphene by atmospheric pressure chemical vapor deposition
    Reckinger, Nicolas
    Felten, Alexandre
    Santos, Cristiane N.
    Hackens, Benoit
    Colomer, Jean-Francois
    CARBON, 2013, 63 : 84 - 91
  • [23] Atmospheric pressure metal organic chemical vapor deposition of thin germanium films
    Fritzsche, Ronny
    Zahn, Dietrich R.
    Mehring, Michael
    JOURNAL OF MATERIALS SCIENCE, 2021, 56 (15) : 9274 - 9286
  • [24] Optimized Atmospheric-Pressure Chemical Vapor Deposition Thermochromic VO2 Thin Films for Intelligent Window Applications
    Malarde, Delphine
    Powell, Michael J.
    Quesada-Cabrera, Raul
    Wilson, Rachel L.
    Carmalt, Claire J.
    Sankar, Gopinathan
    Parkin, Ivan P.
    Palgrave, Robert G.
    ACS OMEGA, 2017, 2 (03): : 1040 - 1046
  • [25] Large scale atmospheric pressure chemical vapor deposition of graphene
    Vlassiouk, Ivan
    Fulvio, Pasquale
    Meyer, Harry
    Lavrik, Nick
    Dai, Sheng
    Datskos, Panos
    Smirnov, Sergei
    CARBON, 2013, 54 : 58 - 67
  • [26] ATMOSPHERIC-PRESSURE CHEMICAL-VAPOR-DEPOSITION OF BLANKET TUNGSTEN FILMS ON SILICON SUBSTRATES FOR INTEGRATED-CIRCUIT APPLICATIONS
    HAQUE, MS
    PATEL, UV
    NASEEM, HA
    BROWN, WD
    JOURNAL OF ELECTRONIC MATERIALS, 1995, 24 (06) : 761 - 766
  • [27] Numerical simulations of films formed by cluster/particle co-deposition in atmospheric-pressure chemical vapor deposition process using organic silicon vapors and ozone gas
    Adachi, M
    Fujimoto, T
    Itoh, Y
    Okuyama, K
    JAPANESE JOURNAL OF APPLIED PHYSICS PART 1-REGULAR PAPERS SHORT NOTES & REVIEW PAPERS, 2000, 39 (6A): : 3542 - 3548
  • [28] Synthesis of Si Nanowires by Using Atmospheric Pressure Chemical Vapor Deposition with SiCl4
    Choi, Taejin
    Kim, Hyungjun
    Kim, Doyoung
    Cheon, Taehoon
    Kim, Soohyun
    JOURNAL OF THE KOREAN PHYSICAL SOCIETY, 2011, 59 (02) : 485 - 488
  • [29] Low-pressure chemical vapor deposition of GaN epitaxial films
    Topf, M
    Steude, G
    Fischer, S
    Kriegseis, W
    Dirnstorfer, I
    Meister, D
    Meyer, BK
    JOURNAL OF CRYSTAL GROWTH, 1998, 189 : 330 - 334
  • [30] Synthesis of aluminum nitride nanostructures via chemical vapor deposition method with nickel as catalyst
    Jiang, Renjie
    Meng, Xianquan
    REVISTA MEXICANA DE FISICA, 2018, 64 (01) : 67 - 71