Imaging Nanoscale Electromagnetic Near-Field Distributions Using Optical Forces

被引:62
作者
Huang, Fei [1 ]
Tamma, Venkata Ananth [2 ]
Mardy, Zahra [1 ]
Burdett, Jonathan [2 ]
Wickramasinghe, H. Kumar [1 ]
机构
[1] Univ Calif Irvine, Dept Elect Engn & Comp Sci, Irvine, CA 92697 USA
[2] Univ Calif Irvine, Dept Chem, CaSTL Ctr, Irvine, CA 92697 USA
基金
美国国家科学基金会;
关键词
MICROSCOPY; VECTOR; PROBES; FILMS;
D O I
10.1038/srep10610
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
We demonstrate the application of Atomic Force Microscopy (AFM) for mapping optical near-fields with nanometer resolution, limited only by the AFM probe geometry. By detecting the optical force between a gold coated AFM probe and its image dipole on a glass substrate, we profile the electric field distributions of tightly focused laser beams with different polarizations. The experimentally recorded focal force maps agree well with theoretical predictions based on a dipole-dipole interaction model. We experimentally estimate the aspect ratio of the apex of gold coated AFM probe using only optical forces. We also show that the optical force between a sharp gold coated AFM probe and a spherical gold nanoparticle of radius 15 nm, is indicative of the electric field distribution between the two interacting particles. Photo Induced Force Microscopy (PIFM) allows for background free, thermal noise limited mechanical imaging of optical phenomenon over wide range of wavelengths from Visible to RF with detection sensitivity limited only by AFM performance.
引用
收藏
页数:12
相关论文
共 35 条
[1]   DIELECTRIC FUNCTIONS AND OPTICAL-PARAMETERS OF SI, GE, GAP, GAAS, GASB, INP, INAS, AND INSB FROM 1.5 TO 6.0 EV [J].
ASPNES, DE ;
STUDNA, AA .
PHYSICAL REVIEW B, 1983, 27 (02) :985-1009
[2]  
Bauer T, 2014, NAT PHOTONICS, V8, P24, DOI [10.1038/NPHOTON.2013.289, 10.1038/nphoton.2013.289]
[3]  
Bohren C.F., 1983, Absorption and Scattering of Light by Small Particles
[4]   Probing the Magnetic Field of Light at Optical Frequencies [J].
Burresi, M. ;
van Oosten, D. ;
Kampfrath, T. ;
Schoenmaker, H. ;
Heideman, R. ;
Leinse, A. ;
Kuipers, L. .
SCIENCE, 2009, 326 (5952) :550-553
[5]   Visualizing the Optical Interaction Tensor of a Gold Nanoparticle Pair [J].
Deutsch, Bradley ;
Hillenbrand, Rainer ;
Novotny, Lukas .
NANO LETTERS, 2010, 10 (02) :652-656
[6]   Reciprocity Theory of Apertureless Scanning Near-Field Optical Microscopy with Point-Dipole Probes [J].
Esslinger, Moritz ;
Vogelgesang, Ralf .
ACS NANO, 2012, 6 (09) :8173-8182
[7]   Three-dimensional optical antennas:: Nanocones in an apertureless scanning near-field microscope [J].
Fleischer, M. ;
Stanciu, C. ;
Stade, F. ;
Stadler, J. ;
Braun, K. ;
Heeren, A. ;
Haeffner, M. ;
Kern, D. P. ;
Meixner, A. J. .
APPLIED PHYSICS LETTERS, 2008, 93 (11)
[8]  
Garcia R, 2012, NAT NANOTECHNOL, V7, P217, DOI [10.1038/NNANO.2012.38, 10.1038/nnano.2012.38]
[9]   Influence of the tip in near-field imaging of nanoparticle plasmonic modes: Weak and strong coupling regimes [J].
Garcia-Etxarri, Aitzol ;
Romero, Isabel ;
Javier Garcia de Abajo, F. ;
Hillenbrand, Rainer ;
Aizpurua, Javier .
PHYSICAL REVIEW B, 2009, 79 (12)
[10]   Bond-Order Discrimination by Atomic Force Microscopy [J].
Gross, Leo ;
Mohn, Fabian ;
Moll, Nikolaj ;
Schuler, Bruno ;
Criado, Alejandro ;
Guitian, Enrique ;
Pena, Diego ;
Gourdon, Andre ;
Meyer, Gerhard .
SCIENCE, 2012, 337 (6100) :1326-1329