RASopathies: unraveling mechanisms with animal models

被引:56
|
作者
Jindal, Granton A. [1 ,2 ]
Goyal, Yogesh [1 ,2 ]
Burdine, Rebecca D. [3 ]
Rauen, Katherine A. [4 ]
Shvartsman, Stanislav Y. [1 ,2 ,3 ]
机构
[1] Princeton Univ, Dept Chem & Biol Engn, Princeton, NJ 08544 USA
[2] Princeton Univ, Lewis Sigler Inst Integrat Genom, Princeton, NJ 08544 USA
[3] Princeton Univ, Dept Mol Biol, Princeton, NJ 08544 USA
[4] Univ Calif Davis, Div Genom Med, MIND Inst, Dept Pediat, Sacramento, CA 95817 USA
基金
美国国家卫生研究院;
关键词
Ras-MAPK; Developmental disorders; Drosophila; Zebrafish; Mice; Drug target; NEUROFIBROMATOSIS TYPE-1 GENE; OF-FUNCTION MUTATIONS; GAP-RELATED DOMAIN; MOUSE MODEL; NOONAN-SYNDROME; COSTELLO-SYNDROME; TUMOR-SUPPRESSOR; GLIOMA FORMATION; MEK INHIBITION; DEVELOPMENTAL DEFECTS;
D O I
10.1242/dmm.020339
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
RASopathies are developmental disorders caused by germline mutations in the Ras-MAPK pathway, and are characterized by a broad spectrum of functional and morphological abnormalities. The high incidence of these disorders (similar to 1/1000 births) motivates the development of systematic approaches for their efficient diagnosis and potential treatment. Recent advances in genome sequencing have greatly facilitated the genotyping and discovery of mutations in affected individuals, but establishing the causal relationships between molecules and disease phenotypes is non-trivial and presents both technical and conceptual challenges. Here, we discuss how these challenges could be addressed using genetically modified model organisms that have been instrumental in delineating the Ras-MAPK pathway and its roles during development. Focusing on studies in mice, zebrafish and Drosophila, we provide an up-to-date review of animal models of RASopathies at the molecular and functional level. We also discuss how increasingly sophisticated techniques of genetic engineering can be used to rigorously connect changes in specific components of the Ras-MAPK pathway with observed functional and morphological phenotypes. Establishing these connections is essential for advancing our understanding of RASopathies and for devising rational strategies for their management and treatment.
引用
收藏
页码:769 / U403
页数:30
相关论文
共 50 条
  • [41] Mobilizing animal models against a pandemic
    Eisenstein, Michael
    LAB ANIMAL, 2020, 49 (06) : 165 - 168
  • [42] Animal models of wound repair: Are they cutting it?
    Ansell, David M.
    Holden, Kirsty A.
    Hardman, Matthew J.
    EXPERIMENTAL DERMATOLOGY, 2012, 21 (08) : 581 - 585
  • [43] Animal and Organoid Models of Liver Fibrosis
    Bao, Yu-long
    Wang, Li
    Pan, Hai-ting
    Zhang, Tai-ran
    Chen, Ya-hong
    Xu, Shan-jing
    Mao, Xin-li
    Li, Shao-wei
    FRONTIERS IN PHYSIOLOGY, 2021, 12
  • [44] Genome editing methods in animal models
    Lee, Hyunji
    Yoon, Da Eun
    Kim, Kyoungmi
    ANIMAL CELLS AND SYSTEMS, 2020, 24 (01) : 8 - 16
  • [45] Animal models for COVID-19
    Munoz-Fontela, Cesar
    Dowling, William E.
    Funnell, Simon G. P.
    Gsell, Pierre-S.
    Riveros-Balta, A. Ximena
    Albrecht, Randy A.
    Andersen, Hanne
    Baric, Ralph S.
    Carroll, Miles W.
    Cavaleri, Marco
    Qin, Chuan
    Crozier, Ian
    Dallmeier, Kai
    de Waal, Leon
    de Wit, Emmie
    Delang, Leen
    Dohm, Erik
    Duprex, W. Paul
    Falzarano, Darryl
    Finch, Courtney L.
    Frieman, Matthew B.
    Graham, Barney S.
    Gralinski, Lisa E.
    Guilfoyle, Kate
    Haagmans, Bart L.
    Hamilton, Geraldine A.
    Hartman, Amy L.
    Herfst, Sander
    Kaptein, Suzanne J. F.
    Klimstra, William B.
    Knezevic, Ivana
    Krause, Philip R.
    Kuhn, Jens H.
    Le Grand, Roger
    Lewis, Mark G.
    Liu, Wen-Chun
    Maisonnasse, Pauline
    McElroy, Anita K.
    Munster, Vincent
    Oreshkova, Nadia
    Rasmussen, Angela L.
    Rocha-Pereira, Joana
    Rockx, Barry
    Rodriguez, Estefania
    Rogers, Thomas F.
    Salguero, Francisco J.
    Schotsaert, Michael
    Stittelaar, Koert J.
    Jan Thibaut, Hendrik
    Tseng, Chien-Te
    NATURE, 2020, 586 (7830) : 509 - 515
  • [46] Translational relevance of forward genetic screens in animal models for the study of psychiatric disease
    Sheardown, Eva
    Mech, Aleksandra M.
    Petrazzini, Maria Elena Miletto
    Leggieri, Adele
    Gidziela, Agnieszka
    Hosseinian, Saeedeh
    Sealy, Ian M.
    Torres-Perez, Jose, V
    Busch-Nentwich, Elisabeth M.
    Malanchini, Margherita
    Brennan, Caroline H.
    NEUROSCIENCE AND BIOBEHAVIORAL REVIEWS, 2022, 135
  • [47] Genetically engineered animal models of Parkinson's disease: From worm to rodent
    Breger, Ludivine S.
    Armentero, Marie T. Fuzzati
    EUROPEAN JOURNAL OF NEUROSCIENCE, 2019, 49 (04) : 533 - 560
  • [48] Recent insights into cerebral cavernous malformations: animal models of CCM and the human phenotype
    Chan, Aubrey C.
    Li, Dean Y.
    Berg, Michel J.
    Whitehead, Kevin J.
    FEBS JOURNAL, 2010, 277 (05) : 1076 - 1083
  • [49] Disease models and mechanisms in the classroom
    Gitler, Aaron D.
    DISEASE MODELS & MECHANISMS, 2009, 2 (3-4) : 103 - 106
  • [50] Establishment of Animal Models of Drug-induced Liver Injury and Analysis of Possible Mechanisms
    Oda, Shingo
    Yokoi, Tsuyoshi
    YAKUGAKU ZASSHI-JOURNAL OF THE PHARMACEUTICAL SOCIETY OF JAPAN, 2015, 135 (04): : 579 - 588