Improving Dermoscopy Image Classification Using Color Constancy

被引:158
作者
Barata, Catarina [1 ]
Celebi, M. Emre [2 ]
Marques, Jorge S. [1 ]
机构
[1] Inst Super Tecn, Inst Syst & Robot, P-1049001 Lisbon, Portugal
[2] Louisiana State Univ, Dept Comp Sci, Shreveport, LA 71115 USA
关键词
Color constancy; color features; computer-aided diagnosis system; dermoscopy images; image color normalization; ABCD RULE; DERMATOSCOPY; DIAGNOSIS;
D O I
10.1109/JBHI.2014.2336473
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Robustness is one of the most important characteristics of computer-aided diagnosis systems designed for dermoscopy images. However, it is difficult to ensure this characteristic if the systems operate with multisource images acquired under different setups. Changes in the illumination and acquisition devices alter the color of images and often reduce the performance of the systems. Thus, it is important to normalize the colors of dermoscopy images before training and testing any system. In this paper, we investigate four color constancy algorithms: Gray World, max-RGB, Shades of Gray, and General Gray World. Our results show that color constancy improves the classification of multisource images, increasing the sensitivity of a bag-of-features system from 71.0% to 79.7% and the specificity from 55.2% to 76% using only 1-D RGB histograms as features.
引用
收藏
页码:1146 / 1152
页数:7
相关论文
共 37 条
[1]   Pattern classification of dermoscopy images: A perceptually uniform model [J].
Abbas, Qaisar ;
Celebi, M. E. ;
Serrano, Carmen ;
Fondon Garcia, Irene ;
Ma, Guangzhi .
PATTERN RECOGNITION, 2013, 46 (01) :86-97
[2]  
Amelard R, 2014, SER BIOENG, P193, DOI 10.1007/978-3-642-39608-3_7
[3]   Epiluminescence microscopy for the diagnosis of doubtful melanocytic skin lesions - Comparison of the ABCD rule of dermatoscopy and a new 7-Point checklist based on pattern analysis [J].
Argenziano, G ;
Fabbrocini, G ;
Carli, P ;
De Giorgi, V ;
Sammarco, E ;
Delfino, M .
ARCHIVES OF DERMATOLOGY, 1998, 134 (12) :1563-1570
[4]  
Argenziano G, 2000, INTERACTIVE ATLAS DE
[5]  
Barata C., 2014, IEEE SYSTEM IN PRESS
[6]  
Barata C, 2014, SER BIOENG, P49, DOI 10.1007/978-3-642-39608-3_3
[7]  
Barata C, 2013, INT SYMP IMAGE SIG, P274
[8]  
Barata C, 2013, LECT NOTES COMPUT SC, V8033, P40, DOI 10.1007/978-3-642-41914-0_5
[9]  
Barata C, 2013, LECT NOTES COMPUT SC, V7887, P715
[10]   A SPATIAL PROCESSOR MODEL FOR OBJECT COLOR-PERCEPTION [J].
BUCHSBAUM, G .
JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 1980, 310 (01) :1-26