NeRFusion: Fusing Radiance Fields for Large-Scale Scene Reconstruction

被引:45
|
作者
Zhang, Xiaoshuai [1 ]
Bi, Sai [2 ]
Sunkavalli, Kalyan [2 ]
Su, Hao [1 ]
Xu, Zexiang [2 ]
机构
[1] Univ Calif San Diego, San Diego, CA 92103 USA
[2] Adobe Res, Washington, DC USA
关键词
D O I
10.1109/CVPR52688.2022.00537
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
While NeRF [28] has shown great success for neural reconstruction and rendering, its limited MLP capacity and long per-scene optimization times make it challenging to model large-scale indoor scenes. In contrast, classical 3D reconstruction methods can handle large-scale scenes but do not produce realistic renderings. We propose NeRFusion, a method that combines the advantages of NeRF and TSDF-based fusion techniques to achieve efficient largescale reconstruction and photo-realistic rendering. We process the input image sequence to predict per-frame local radiance fields via direct network inference. These are then fused using a novel recurrent neural network that incrementally reconstructs a global, sparse scene representation in real-time at 22 fps. This global volume can be further fine-tuned to boost rendering quality. We demonstrate that NeR-Fusionachieves state-of-the-art quality on both large-scale indoor and small-scale object scenes, with substantially faster reconstruction than NeRF and other recent methods.
引用
收藏
页码:5439 / 5448
页数:10
相关论文
共 50 条
  • [41] Multiple-Object Tracking in Large-Scale Scene
    Yuan, Wenbo
    Cao, Zhiqiang
    Tan, Min
    Chen, Hongkai
    IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 2016, E99D (07): : 1903 - 1909
  • [42] Multi-view stereo for large-scale scene reconstruction with MRF-based depth inference
    Sun, Shang
    Xu, Dan
    Wu, Hao
    Ying, Haocong
    Mou, Yurui
    COMPUTERS & GRAPHICS-UK, 2022, 106 : 248 - 258
  • [43] On the Road to Large-Scale 3D Monocular Scene Reconstruction using Deep Implicit Functions
    Roddick, Thomas
    Biggs, Benjamin
    Reino, Daniel Olmeda
    Cipolla, Roberto
    2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION WORKSHOPS (ICCVW 2021), 2021, : 2875 - 2884
  • [44] Unconstrained Scene Generation with Locally Conditioned Radiance Fields
    DeVries, Terrance
    Bautista, Miguel Angel
    Srivastava, Nitish
    Taylor, Graham W.
    Susskind, Joshua M.
    2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2021), 2021, : 14284 - 14293
  • [45] Scene-Generalizable Interactive Segmentation of Radiance Fields
    Tang, Songlin
    Pei, Wenjie
    Tao, Xin
    Jia, Tanghui
    Lu, Guangming
    Tai, Yu-Wing
    PROCEEDINGS OF THE 31ST ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, MM 2023, 2023, : 6744 - 6755
  • [46] SIGNeRF: Scene Integrated Generation for Neural Radiance Fields
    Dihlmann, Jan-Niklas
    Engelhardt, Andreas
    Lensch, Hendrik
    2024 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2024, 2024, : 6679 - 6688
  • [47] The joint emergence of large-scale structure and large-scale magnetic fields after combination time
    Greyber, HD
    EMERGENCE OF COSMIC STRUCTURE, 2003, 666 : 365 - 368
  • [48] SKEWNESS AND KURTOSIS IN LARGE-SCALE COSMIC FIELDS
    BERNARDEAU, F
    ASTROPHYSICAL JOURNAL, 1994, 433 (01): : 1 - 18
  • [49] ON THE DYNAMICS OF GALAXIES WITH LARGE-SCALE MAGNETIC FIELDS
    ELVIUS, A
    HERLOFSON, N
    ASTROPHYSICAL JOURNAL, 1960, 131 (02): : 304 - 309
  • [50] Magnetic Fields in the Large-Scale Structure of the Universe
    D. Ryu
    D. R. G. Schleicher
    R. A. Treumann
    C. G. Tsagas
    L. M. Widrow
    Space Science Reviews, 2012, 166 : 1 - 35