A cognitive brain-computer interface for patients with amyotrophic lateral sclerosis

被引:6
|
作者
Hohmann, M. R. [1 ,2 ]
Fomina, T. [1 ,2 ]
Jayaram, V. [1 ,2 ]
Widmann, N. [2 ]
Foerster, C. [2 ]
Just, J. [3 ,4 ]
Synofzik, M. [3 ]
Schoelkopf, B. [2 ]
Schoels, L. [3 ,4 ]
Grosse-Wentrup, M. [2 ]
机构
[1] Int Max Planck Res Sch Cognit & Syst Neurosci, Tubingen, Germany
[2] Max Planck Inst Intelligent Syst, Tubingen, Germany
[3] Hertie Inst Clin Brain Res, Tubingen, Germany
[4] German Ctr Neurodegenerat Dis DZNE, Tubingen, Germany
来源
BRAIN-COMPUTER INTERFACES: LAB EXPERIMENTS TO REAL-WORLD APPLICATIONS | 2016年 / 228卷
关键词
EEG; Brain-computer interface; Brain-machine interface; ALS; locked-in; DEFAULT MODE NETWORK; INDEPENDENT COMPONENT ANALYSIS; ELECTROENCEPHALOGRAPHIC INFERENCES; ELECTROMYOGENIC ARTIFACTS; COMMUNICATION; CORTEX; CONNECTIVITY; CONSCIOUSNESS; PARALYSIS; ATTENTION;
D O I
10.1016/bs.pbr.2016.04.022
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Brain-computer interfaces (BCIs) are often based on the control of sensorimotor processes, yet sensorimotor processes are impaired in patients suffering from amyotrophic lateral sclerosis (ALS). We devised a new paradigm that targets higher-level cognitive processes to transmit information from the user to the BCI. We instructed five ALS patients and twelve healthy subjects to either activate self-referential memories or to focus on a process without mnemonic content while recording a high-density electroencephalogram (EEG). Both tasks are designed to modulate activity in the default mode network (DMN) without involving sensorimotor pathways. We find that the two tasks can be distinguished after only one experimental session from the average of the combined bandpower modulations in the theta( 4-7 Hz) and alpha-range (8-13 Hz), with an average accuracy of 62.5% and 60.8% for healthy subjects and ALS patients, respectively. The spatial weights of the decoding algorithm show a preference for the parietal area, consistent with modulation of neural activity in primary nodes of the DMN.
引用
收藏
页码:221 / 239
页数:19
相关论文
共 50 条
  • [31] Cognitive assessment in Amyotrophic Lateral Sclerosis by means of P300-Brain Computer Interface: a preliminary study
    Poletti, Barbara
    Carelli, Laura
    Solca, Federica
    Lafronza, Annalisa
    Pedroli, Elisa
    Faini, Andrea
    Zago, Stefano
    Ticozzi, Nicola
    Meriggi, Paolo
    Cipresso, Pietro
    Lule, Dorothee
    Ludolph, Albert C.
    Riva, Giuseppe
    Silani, Vincenzo
    AMYOTROPHIC LATERAL SCLEROSIS AND FRONTOTEMPORAL DEGENERATION, 2016, 17 (7-8) : 473 - 481
  • [32] Assistive Device With Conventional, Alternative, and Brain-Computer Interface Inputs to Enhance Interaction With the Environment for People With Amyotrophic Lateral Sclerosis: A Feasibility and Usability Study
    Schettini, Francesca
    Riccio, Angela
    Simione, Luca
    Liberati, Giulia
    Caruso, Mario
    Frasca, Vittorio
    Calabrese, Barbara
    Mecella, Massimo
    Pizzimenti, Alessia
    Inghilleri, Maurizio
    Mattia, Donatella
    Cincotti, Febo
    ARCHIVES OF PHYSICAL MEDICINE AND REHABILITATION, 2015, 96 (03): : S46 - S53
  • [33] Brain-computer interface systems: progress and prospects
    Allison, Brendan Z.
    Wolpaw, Elizabeth Winter
    Wolpaw, Andjonothan R.
    EXPERT REVIEW OF MEDICAL DEVICES, 2007, 4 (04) : 463 - 474
  • [34] Brain-Computer Interfacing in Amyotrophic Lateral Sclerosis: Implications of a Resting-State EEG Analysis
    Jayaram, Vinay
    Widmann, Natalie
    Foerster, Christian
    Fomina, Tatiana
    Hohmann, Matthias
    Hagen, Jennifer Mueller vom
    Synofzik, Matthis
    Schoelkopf, Bernhard
    Schoels, Ludger
    Grosse-Wentrup, Moritz
    2015 37TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2015, : 6979 - 6982
  • [35] Habituation of P300 in the Use of P300-based Brain-Computer Interface Spellers: Individuals With Amyotrophic Lateral Sclerosis Versus Age-Matched Controls
    Yu, Xiaoqian
    da Silva-Sauer, Leandro
    Donchin, Emanuel
    CLINICAL EEG AND NEUROSCIENCE, 2021, 52 (03) : 221 - 230
  • [36] The effects of working memory on brain-computer interface performance
    Sprague, Samantha A.
    McBee, Matthew T.
    Sellers, Eric W.
    CLINICAL NEUROPHYSIOLOGY, 2016, 127 (02) : 1331 - 1341
  • [37] Gaming the Attention with a SSVEP-Based Brain-Computer Interface
    Lopez-Gordo, M. A.
    Perez, Eduardo
    Minguillon, Jesus
    UNDERSTANDING THE BRAIN FUNCTION AND EMOTIONS, PT I, 2019, 11486 : 51 - 59
  • [38] Editorial: Datasets for Brain-Computer Interface Applications
    Daly, Ian
    Matran-Fernandez, Ana
    Valeriani, Davide
    Lebedev, Mikhail
    Kuebler, Andrea
    FRONTIERS IN NEUROSCIENCE, 2021, 15
  • [39] New horizons in brain-computer interface research
    Sellers, Eric W.
    CLINICAL NEUROPHYSIOLOGY, 2013, 124 (01) : 2 - 4
  • [40] Neuroanatomical correlates of brain-computer interface performance
    Kasahara, Kazumi
    DaSalla, Charles Sayo
    Honda, Manabu
    Hanakawa, Takashi
    NEUROIMAGE, 2015, 110 : 95 - 100