A Fault Feature Extraction Method Based on Second-Order Coupled Step-Varying Stochastic Resonance for Rolling Bearings

被引:3
|
作者
Lu, Lu [1 ]
Yuan, Yu [2 ,3 ]
Chen, Chen [1 ]
Deng, Wu [3 ,4 ]
机构
[1] Dalian Jiaotong Univ, Sch Mech Engn, Dalian 116028, Peoples R China
[2] Dalian Jiaotong Univ, Sch Locomot & Rolling Stock Engn, Dalian 116028, Peoples R China
[3] Southwest Jiaotong Univ, Tract Power State Key Lab, Chengdu 610031, Peoples R China
[4] Civil Aviat Univ China, Coll Elect Informat & Automat, Tianjin 300300, Peoples R China
来源
APPLIED SCIENCES-BASEL | 2020年 / 10卷 / 07期
基金
中国国家自然科学基金;
关键词
strong noise; SCSSR; weak signals; SNR; SOA; COLONY OPTIMIZATION ALGORITHM; DIAGNOSIS; STRATEGIES;
D O I
10.3390/app10072602
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
In mechanical equipment, rolling bearings analyze and monitor their fault based on their vibration signals. Vibration signals obtained are usually weak because the machine works in a noisy background that makes it very difficult to extract its feature. To address this problem, a second-order coupled step-varying stochastic resonance (SCSSR) system is proposed. The system couples two second-order stochastic resonance (SR) systems into a multistable system, one of which is a controlled system and the other of which is a controlling system that uses the output of one system to adjust the output of the other system to enhance the weak signal. In this method, we apply the seeker optimization algorithm (SOA), which uses the output signal-to-noise ratio (SNR) as the estimating function and combines the twice-sampling technology to adaptively select the parameters of the coupled SR system to achieve feature enhancement and collection of the weak periodic signal. The simulation and real fault data of a bearing prove that this method has better results in detecting weak signals, and the system output SNR is higher than the traditional SR method.
引用
收藏
页数:11
相关论文
共 50 条
  • [41] Tacholess skidding evaluation and fault feature enhancement base on a two-step speed estimation method for rolling bearings
    Yan, Chang
    Lin, Jing
    Liang, Kaixuan
    Ma, Zhipeng
    Zhang, Zhiqiang
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2022, 162
  • [42] Unknown fault feature extraction of rolling bearings under variable speed conditions based on statistical complexity measures
    Wang, Zhile
    Yang, Jianhua
    Guo, Yu
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2022, 172
  • [43] Weak Fault Feature Extraction of Rolling Bearings Based on Adaptive Variational Modal Decomposition and Multiscale Fuzzy Entropy
    Lv, Zhongliang
    Han, Senping
    Peng, Linhao
    Yang, Lin
    Cao, Yujiang
    SENSORS, 2022, 22 (12)
  • [44] Fault Severity Monitoring of Rolling Bearings Based on Texture Feature Extraction of Sparse Time-Frequency Images
    Du, Yan
    Chen, Yingpin
    Meng, Guoying
    Ding, Jun
    Xiao, Yajing
    APPLIED SCIENCES-BASEL, 2018, 8 (09):
  • [45] Fault Feature Extraction of Rolling Bearing Based on an Improved Cyclical Spectrum Density Method
    Li Min
    Yang Jianhong
    Wang Xiaojing
    CHINESE JOURNAL OF MECHANICAL ENGINEERING, 2015, 28 (06) : 1240 - 1247
  • [46] Fault feature extraction method for rolling bearing based on MVMD and complex Fourier transform
    Huang, Chuanjin
    Song, Haijun
    JOURNAL OF VIBROENGINEERING, 2023, 25 (02) : 269 - 289
  • [47] Unknown fault detection method for rolling bearings based on image and signal series feature fusion enhancement
    Niu, Di
    Yu, Shusong
    Xu, Jiali
    Wang, Chenglong
    Li, Ruoxi
    Ding, Xiangqian
    MULTIMEDIA TOOLS AND APPLICATIONS, 2023, 83 (41) : 89479 - 89500
  • [48] An enhanced stochastic resonance method for weak feature extraction from vibration signals in bearing fault detection
    Lei, Yaguo
    Lin, Jing
    Han, Dong
    He, Zhengjia
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART C-JOURNAL OF MECHANICAL ENGINEERING SCIENCE, 2014, 228 (05) : 815 - 827
  • [49] Weak Fault Feature Extraction of Rolling Bearings Using Local Mean Decomposition-Based Multilayer Hybrid Denoising
    Yu, Jianbo
    Lv, Jingxiang
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2017, 66 (12) : 3148 - 3159
  • [50] A rolling element bearing fault feature extraction method based on the EWT and an arctangent threshold function
    Li, Chao
    Xu, Feiyun
    Yang, Hongxin
    Zou, Lei
    JOURNAL OF MECHANICAL SCIENCE AND TECHNOLOGY, 2022, 36 (04) : 1693 - 1708