Microscopic Mechanism for the Displacement of Shale Oil by CO2 in Organic Nanopores

被引:3
|
作者
Dou, Xiangji [1 ]
Zhu, Pengfei [1 ]
Qi, Guodong [2 ]
He, Yanfeng [1 ]
Shao, Dongdong [1 ]
Qian, Kun [1 ]
机构
[1] Changzhou Univ, Sch Petr & Nat Gas Engn, Changzhou 213164, Peoples R China
[2] Jiangsu Oilfield Co, Sinopec Grp, Yangzhou 225000, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
shale oil; n-dodecane; CO2; molecular dynamics simulation; displacement; COMPETITIVE ADSORPTION; MIXTURES; PORES; SIMULATION;
D O I
10.3390/en15197064
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
The effective displacement of the shale oil from organic nanopores plays a significant role in development of the shale oil reservoirs. In order to deeply understand the microscopic displacement mechanism of alkane of shale oil by CO2 in organic nanopores, microscopic pore model of organic matter and molecular model of CO2 and n-dodecane were established to investigate the influences of key parameters on the displacement process by using the Monte Carlo and molecular dynamics simulation method. The instantaneous adsorption of molecules demonstrates that the displacement of n-dodecane and the adsorption of CO2 are proportional to the increase of the injection pressure of CO2 as well as the pore size. In addition, the results also show that the adsorption capacity of CO2 first increases and then decreases with the increase of the temperature, which indicates that the optimum temperature exists for the adsorption of CO2. This work can provide critical insights into understanding the microscopic displacement mechanism of shale oil by CO2 in organic nanopores in shale oil reservoirs and lay a solid foundation for the CO2 flooding in the shale oil reservoir and the CO2 storage.
引用
收藏
页数:16
相关论文
共 50 条
  • [41] Experimental study on CO2 Huff-n-Puff for enhanced shale oil recovery and microscopic mobilization characteristics using online NMR
    Huang, Yong
    Liu, Feng
    Kang, Yong
    Hu, Yi
    Li, Lian
    Liu, Yiwei
    FUEL, 2025, 387
  • [42] CO2 diffusion in shale oil based on molecular simulation and pore network model
    Feng, Qihong
    Xing, Xiangdong
    Wang, Sen
    Liu, Gaowen
    Qin, Yong
    Zhang, Jing
    FUEL, 2024, 359
  • [43] Molecular insight into replacement dynamics of CO2 enhanced oil recovery in nanopores
    Wang, Runxi
    Bi, Sheng
    Guo, Zhaoli
    Feng, Guang
    CHEMICAL ENGINEERING JOURNAL, 2022, 440
  • [44] Study on mechanism of Pre-CO2 fracturing and analysis of sensitive factors for CO2 fracturing backflow in shale oil reservoirs
    Zhou, Xiaofeng
    Wang, Qingzhao
    Wei, Jianguang
    Cheng, Haoran
    Huang, Bin
    Shang, Demiao
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2025, 117 : 409 - 419
  • [45] Mechanism of CO2 EOR in shale oil reservoirs in the Jimsar Sag, the Junggar Basin
    Zuo M.
    Chen H.
    Zhao J.
    Liu X.
    Meng Z.
    Bai M.
    Yang J.
    Wu Y.
    Liu H.
    Qi X.
    Cheng W.
    Natural Gas Industry, 2024, 44 (04) : 126 - 134
  • [46] The impact of fracture network on CO2 storage in shale oil reservoirs
    Wan, Tao
    Zhang, Jing
    Dong, Yan
    GEOENERGY SCIENCE AND ENGINEERING, 2023, 231
  • [47] On the replacement behavior of CO2 in nanopores of shale oil reservoirs: Insights from wettability tests and molecular dynamics simulations
    Dong, Xiaohu
    Xu, Wenjing
    Liu, Huiqing
    Chen, Zhangxin
    Lu, Ning
    Wang, Wuchao
    GEOENERGY SCIENCE AND ENGINEERING, 2023, 223
  • [48] Effect of N2 and CO2 on shale oil from pyrolysis of Estonian oil shale
    Mozaffari, Sepehr
    Jarvik, Oliver
    Baird, Zachariah Steven
    INTERNATIONAL JOURNAL OF COAL PREPARATION AND UTILIZATION, 2022, 42 (10) : 2908 - 2922
  • [49] Monte Carlo Simulation of the Adsorption and Displacement of CH4 by CO2 Injection in Shale Organic Carbon Slit Micropores for CO2 Enhanced Shale Gas Recovery
    Zhang, Hongyang
    Diao, Rui
    Mostofi, Masood
    Evans, Brian
    ENERGY & FUELS, 2020, 34 (01) : 150 - 163
  • [50] Mechanism of CO2 enhanced oil recovery in kerogen pores and CO2 sequestration in shale: A molecular dynamics simulation study
    Sui, Hongguang
    Zhang, Fengyun
    Zhang, Lei
    Wang, Ziqiang
    Yuan, Songling
    Wang, Diansheng
    Wang, Yudou
    FUEL, 2023, 349