Poisson convergence of eigenvalues of circulant type matrices

被引:10
|
作者
Bose, Arup [1 ]
Hazra, Rajat Subhra [1 ]
Saha, Koushik [1 ]
机构
[1] Indian Stat Inst, Stat & Math Unit, Kolkata 700108, India
关键词
Circulant matrix; k-circulant matrix; Eigenvalues; Large dimensional random matrix; Moving average process; Normal approximation; Point process; Poisson random measure; Reverse circulant matrix; Spectral density; Symmetric circulant matrix; STATISTICS;
D O I
10.1007/s10687-010-0115-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider the point processes based on the eigenvalues of the reverse circulant, symmetric circulant and k-circulant matrices with i.i.d. entries and show that they converge to a Poisson random measures in vague topology. The joint convergence of upper ordered eigenvalues and their spacings follow from this. We extend these results partially to the situation where the entries are come from a two sided moving average process.
引用
收藏
页码:365 / 392
页数:28
相关论文
共 50 条
  • [31] On circulant complex Hadamard matrices
    Arasu, KT
    De Launey, W
    Ma, SL
    DESIGNS CODES AND CRYPTOGRAPHY, 2002, 25 (02) : 123 - 142
  • [32] Fourier and Circulant Matrices are Not Rigid
    Dvir, Zeev
    Liu, Allen
    THEORY OF COMPUTING, 2020, 16
  • [33] Norms of randomized circulant matrices
    Latala, Rafal
    Swiatowski, Witold
    ELECTRONIC JOURNAL OF PROBABILITY, 2022, 27
  • [34] On Circulant Complex Hadamard Matrices
    K. T. Arasu
    Warwick de Launey
    S. L. Ma
    Designs, Codes and Cryptography, 2002, 25 : 123 - 142
  • [35] The inverses of some circulant matrices
    Carmona, A.
    Encinas, A. M.
    Gago, S.
    Jimenez, M. J.
    Mitjana, M.
    APPLIED MATHEMATICS AND COMPUTATION, 2015, 270 : 785 - 793
  • [36] On Q-circulant matrices
    Li, Hongjian
    Zhang, Weilin
    Yuan, Pingzhi
    COMPUTATIONAL & APPLIED MATHEMATICS, 2024, 43 (03)
  • [37] The cryptologic characteristics of circulant matrices
    Han H.
    Zhu S.
    Li Q.
    He Y.
    Wang X.
    Wang Y.
    Li, Qin (qinliip@163.com), 1600, Inderscience Publishers (12): : 248 - 254
  • [38] Fourier and circulant matrices are not rigid
    Dvir Z.
    Liu A.
    Theory of Computing, 2020, 16
  • [39] Fourier and Circulant Matrices Are Not Rigid
    Dvir, Zeev
    Liu, Allen
    34TH COMPUTATIONAL COMPLEXITY CONFERENCE (CCC 2019), 2019, 137
  • [40] ON THE g-CIRCULANT MATRICES
    Bahsi, Mustafa
    Solak, Suleyman
    COMMUNICATIONS OF THE KOREAN MATHEMATICAL SOCIETY, 2018, 33 (03): : 695 - 704