Poisson convergence of eigenvalues of circulant type matrices

被引:10
|
作者
Bose, Arup [1 ]
Hazra, Rajat Subhra [1 ]
Saha, Koushik [1 ]
机构
[1] Indian Stat Inst, Stat & Math Unit, Kolkata 700108, India
关键词
Circulant matrix; k-circulant matrix; Eigenvalues; Large dimensional random matrix; Moving average process; Normal approximation; Point process; Poisson random measure; Reverse circulant matrix; Spectral density; Symmetric circulant matrix; STATISTICS;
D O I
10.1007/s10687-010-0115-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider the point processes based on the eigenvalues of the reverse circulant, symmetric circulant and k-circulant matrices with i.i.d. entries and show that they converge to a Poisson random measures in vague topology. The joint convergence of upper ordered eigenvalues and their spacings follow from this. We extend these results partially to the situation where the entries are come from a two sided moving average process.
引用
收藏
页码:365 / 392
页数:28
相关论文
共 50 条
  • [1] Poisson convergence of eigenvalues of circulant type matrices
    Arup Bose
    Rajat Subhra Hazra
    Koushik Saha
    Extremes, 2011, 14 : 365 - 392
  • [2] Spectral Norm of Circulant-Type Matrices
    Bose, Arup
    Hazra, Rajat Subhra
    Saha, Koushik
    JOURNAL OF THEORETICAL PROBABILITY, 2011, 24 (02) : 479 - 516
  • [3] Limiting spectral distribution of circulant type matrices with dependent inputs
    Bose, Arup
    Hazra, Rajat Subhra
    Saha, Koushik
    ELECTRONIC JOURNAL OF PROBABILITY, 2009, 14 : 2463 - 2491
  • [4] Spectral Norm of Circulant-Type Matrices
    Arup Bose
    Rajat Subhra Hazra
    Koushik Saha
    Journal of Theoretical Probability, 2011, 24 : 479 - 516
  • [5] SPECTRAL NORM OF CIRCULANT TYPE MATRICES WITH HEAVY TAILED ENTRIES
    Bose, Arup
    Hazra, Rajat Subhra
    Saha, Koushik
    ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2010, 15 : 299 - 313
  • [6] Circulant type matrices with heavy tailed entries
    Bose, Arup
    Guha, Suman
    Hazra, Rajat Subhra
    Saha, Koushik
    STATISTICS & PROBABILITY LETTERS, 2011, 81 (11) : 1706 - 1716
  • [7] Universality in the fluctuation of eigenvalues of random circulant matrices
    Adhikari, Kartick
    Saha, Koushik
    STATISTICS & PROBABILITY LETTERS, 2018, 138 : 1 - 8
  • [8] Poisson convergence for the largest eigenvalues of heavy tailed random matrices
    Auffinger, Antonio
    Ben Arous, Gerard
    Peche, Sandrine
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2009, 45 (03): : 589 - 610
  • [9] EIGENVALUES OF CIRCULANT MATRICES AND A CONJECTURE OF RYSER
    Euler, Reinhardt
    Gallardo, Luis H.
    Rahavandrainy, Olivier
    KRAGUJEVAC JOURNAL OF MATHEMATICS, 2021, 45 (05): : 751 - 759
  • [10] HOW TO DETERMINE THE EIGENVALUES OF G-CIRCULANT MATRICES
    Ngondiep, Eric
    OPERATORS AND MATRICES, 2018, 12 (03): : 797 - 822