Comparative studies on the pyrolysis of cellulose, hemicellulose, and lignin based on combined kinetics

被引:194
|
作者
Yeo, Jun Yi [1 ]
Chin, Bridgid Lai Fui [1 ]
Tan, Jun Kit [1 ]
Loh, Ying Sheng [1 ]
机构
[1] Curtin Univ, Fac Engn & Sci, Dept Chem Engn, Sarawak Campus,CDT 250, Miri 98009, Sarawak, Malaysia
关键词
Kinetics; Pyrolysis; Cellulose; Hemicellulose; Lignin; RUBBER SEED SHELL; THERMAL-DEGRADATION; BIOMASS PYROLYSIS; MODEL; XYLAN; DECOMPOSITION; MECHANISM; BEHAVIOR;
D O I
10.1016/j.joei.2017.12.003
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
The thermal degradation behavior and pyrolytic mechanism of cellulose, hemicellulose, and lignin are investigated at different heating rates from 10 Kmin(-1) to 100 Kmin(-1) with a step-size of 10 Kmin(-1) using thermogravimetric analysis (TGA) equipment. It is observed that there are one, two, and three stages of pyrolytic reactions takes place in cellulose, hemicellulose, and lignin respectively. Isoconversional method is not suitable to analyse pyrolysis of hemicellulose and lignin as it involves multi-step reactions. The activation energies of the main decomposition stage for cellulose, hemicellulose, and lignin are 199.66, 95.39, and 174.40 kJ mol(-)(1) respectively. It is deduced that the pyrolysis reaction of cellulose corresponds to random scission mechanism while the pyrolysis reaction of hemicellulose and lignin follows the order based reaction mechanisms. (C) 2017 Energy Institute. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:27 / 37
页数:11
相关论文
共 50 条
  • [1] Effects of cellulose, hemicellulose and lignin on biomass pyrolysis kinetics
    Lingli Zhu
    Zhaoping Zhong
    Korean Journal of Chemical Engineering, 2020, 37 : 1660 - 1668
  • [2] Effects of cellulose, hemicellulose and lignin on biomass pyrolysis kinetics
    Zhu, Lingli
    Zhong, Zhaoping
    KOREAN JOURNAL OF CHEMICAL ENGINEERING, 2020, 37 (10) : 1660 - 1668
  • [3] A generalized biomass pyrolysis model based on superimposed cellulose, hemicellulose and lignin kinetics
    Miller, RS
    Bellan, J
    COMBUSTION SCIENCE AND TECHNOLOGY, 1997, 126 (1-6) : 97 - 137
  • [4] Characteristics of hemicellulose, cellulose and lignin pyrolysis
    Yang, Haiping
    Yan, Rong
    Chen, Hanping
    Lee, Dong Ho
    Zheng, Chuguang
    FUEL, 2007, 86 (12-13) : 1781 - 1788
  • [5] Cleavage of Covalent Bonds in the Pyrolysis of Lignin, Cellulose, and Hemicellulose
    Liu, Muxin
    Yang, Jianli
    Liu, Zhenyu
    He, Wenjing
    Liu, Qingya
    Li, Yunmei
    Yang, Yong
    ENERGY & FUELS, 2015, 29 (09) : 5773 - 5780
  • [6] Volatile production from pyrolysis of cellulose, hemicellulose and lignin
    Zhao, Chenxi
    Jiang, Enchen
    Chen, Aihui
    JOURNAL OF THE ENERGY INSTITUTE, 2017, 90 (06) : 902 - 913
  • [7] A study of lignocellulosic biomass pyrolysis via the pyrolysis of cellulose, hemicellulose and lignin
    Stefanidis, Stylianos D.
    Kalogiannis, Konstantinos G.
    Iliopoulou, Eleni F.
    Michailof, Chrysoula M.
    Pilavachi, Petros A.
    Lappas, Angelos A.
    JOURNAL OF ANALYTICAL AND APPLIED PYROLYSIS, 2014, 105 : 143 - 150
  • [8] A study of lignocellulosic biomass pyrolysis via the pyrolysis of cellulose, hemicellulose and lignin
    Stefanidis, S.D. (s_stepha@cperi.certh.gr), 1600, Elsevier B.V., Netherlands (105):
  • [9] Prediction of pyrolysis of pistachio shells based on its components hemicellulose, cellulose and lignin
    Peters, Bernhard
    FUEL PROCESSING TECHNOLOGY, 2011, 92 (10) : 1993 - 1998
  • [10] A novel method for kinetics analysis of pyrolysis of hemicellulose, cellulose, and lignin in TGA and macro-TGA
    Zhou, Hui
    Long, Yanqiu
    Meng, Aihong
    Chen, Shen
    Li, Qinghai
    Zhang, Yanguo
    RSC ADVANCES, 2015, 5 (34): : 26509 - 26516