Multiscale modeling of size-dependent elastic properties of carbon nanotube/polymer nanocomposites with interfacial imperfections

被引:122
作者
Yang, Seunghwa [1 ]
Yu, Suyoung [1 ]
Kyoung, Woomin [2 ]
Han, Do-Suck [2 ]
Cho, Maenghyo [1 ]
机构
[1] Seoul Natl Univ, Sch Mech & Aerosp Engn, WCU Multiscale Mech Design Div, Seoul 151742, South Korea
[2] Cent Adv Res & Engn Inst, Comp Aided Engn & Mat Res Team, Hyundai & Kia Corp Res & Dev Div, Uiwang Si 437040, Gyeonggi Do, South Korea
关键词
Nanocomposites; Carbon nanotube; Multiscale modeling; REINFORCED COMPOSITES; POLYMER COMPOSITES; MECHANICAL-PROPERTIES; THERMAL-CONDUCTIVITY; NANOTUBES; INCLUSION; DYNAMICS; WAVINESS; MODULUS;
D O I
10.1016/j.polymer.2011.11.052
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
We developed an efficient and extensible multiscale analysis to consider the carbon nanotube (CNT) size effect and weakened bonding effect at the interface on the effective elastic stiffness of CNT/polymer nanocomposites using molecular dynamics (MD) simulations and continuum micromechanics. Under the assumption that the CNT molecular structure is an equivalent solid cylinder, molecular mechanics calculation results for transversely isotropic elastic stiffness were found to decrease as the radius of the CNT increased. Similarly, the transversely isotropic elastic moduli of aligned pristine CNT-reinforced polypropylene composites obtained from molecular dynamics simulations exhibited the same CNT size dependency. However, a weakened interface effect was observed from the transverse Young's modulus and two shear moduli. To account for the size effect and the weakened interface in the micromechanics-based multiscale model, a modified multi-inclusion model is derived with an effective particle scheme. Also, an effective matrix concept is suggested to account for the formation of an interphase near the surface of the CNT, and the elastic stiffness of the CNT and the effective matrix is defined as a function of the CNT radius to describe size-dependent elastic stiffness in the micromechanics regime. (C) 2011 Published by Elsevier Ltd.
引用
收藏
页码:623 / 633
页数:11
相关论文
共 34 条
[1]   A comprehensive closed form micromechanics model for estimating the elastic modulus of nanotube-reinforced composites [J].
Anumandla, Vijay ;
Gibson, Ronald F. .
COMPOSITES PART A-APPLIED SCIENCE AND MANUFACTURING, 2006, 37 (12) :2178-2185
[2]  
Benveniste Y, 1993, MECH MATER, V14, P147
[3]   Unusually high thermal conductivity of carbon nanotubes [J].
Berber, S ;
Kwon, YK ;
Tománek, D .
PHYSICAL REVIEW LETTERS, 2000, 84 (20) :4613-4616
[4]   Thermal conductivity of carbon nanotubes [J].
Che, JW ;
Çagin, T ;
Goddard, WA .
NANOTECHNOLOGY, 2000, 11 (02) :65-69
[5]   A study on the prediction of the mechanical properties of nanoparticulate composites using the homogenization method with the effective interface concept [J].
Cho, Maenghyo ;
Yang, Seunghwa ;
Chang, Seongmin ;
Yu, Suyoung .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2011, 85 (12) :1564-1583
[6]   Small but strong: A review of the mechanical properties of carbon nanotube-polymer composites [J].
Coleman, Jonathan N. ;
Khan, Umar ;
Blau, Werner J. ;
Gun'ko, Yurii K. .
CARBON, 2006, 44 (09) :1624-1652
[7]   Electrical conductivity of individual carbon nanotubes [J].
Ebbesen, TW ;
Lezec, HJ ;
Hiura, H ;
Bennett, JW ;
Ghaemi, HF ;
Thio, T .
NATURE, 1996, 382 (6586) :54-56
[8]  
ESHELBY JD, 1957, P ROY SOC LONDON A, V241
[9]   Fiber waviness in nanotube-reinforced polymer composites-1: Modulus predictions using effective nanotube properties [J].
Fisher, FT ;
Bradshaw, RD ;
Brinson, LC .
COMPOSITES SCIENCE AND TECHNOLOGY, 2003, 63 (11) :1689-1703
[10]   Computational and experimental study of interfacial bonding of single-walled nanotube reinforced composites [J].
Gou, JH ;
Minaie, B ;
Wang, B ;
Liang, ZY ;
Zhang, C .
COMPUTATIONAL MATERIALS SCIENCE, 2004, 31 (3-4) :225-236