Upper bounds on product and multiplier empirical processes

被引:34
|
作者
Mendelson, Shahar [1 ]
机构
[1] IIT, Technion, Dept Math, IL-32000 Haifa, Israel
基金
以色列科学基金会;
关键词
Empirical processes; Generic chaining; RANDOM-VARIABLES; CANONICAL PROCESSES; MOMENTS; TAILS; SUMS;
D O I
10.1016/j.spa.2016.04.019
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We study two empirical processes of special structure: firstly, the centred multiplier process indexed by a class F, f -> vertical bar Sigma(N)(i=1) (xi(i) f(X-i) - Epsilon xi f) vertical bar, where the i.i.d. multipliers (xi(i))(i=1)(N) need not be independent of (X-i)(i=1)(N), and secondly, (f, h) -> vertical bar Sigma(N)(i=1) (f(X-i)h(X-i) -Epsilon fh) vertical bar, the centred product process indexed by the classes F and H. We use chaining methods to obtain high probability upper bounds on the suprema of the two processes using a natural variation of Talagrand's gamma-functionals. (C) 2016 Published by Elsevier B.V.
引用
收藏
页码:3652 / 3680
页数:29
相关论文
共 50 条
  • [41] Upper risk bounds in internal factor models with constrained specification sets
    Ansari, Jonathan
    Rueschendorf, Ludger
    PROBABILITY UNCERTAINTY AND QUANTITATIVE RISK, 2020, 5 (01)
  • [42] Upper bounds for strictly concave distortion risk measures on moment spaces
    Cornilly, D.
    Rueschendorf, L.
    Vanduffel, S.
    INSURANCE MATHEMATICS & ECONOMICS, 2018, 82 : 141 - 151
  • [43] Regularity of symbolic and ordinary powers of weighted oriented graphs and their upper bounds
    Kumar, Manohar
    Nanduri, Ramakrishna
    COMMUNICATIONS IN ALGEBRA, 2025,
  • [44] Upper bounds for the regularity of symbolic powers of certain classes of edge ideals
    Kumar, Arvind
    Selvaraja, S.
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2023, 22 (01)
  • [45] On Special Empirical Processes of Independence in Presence of Covariates
    Abdushukurov, Abduraxim A.
    Abdikalikov, Farkhad A.
    JOURNAL OF SIBERIAN FEDERAL UNIVERSITY-MATHEMATICS & PHYSICS, 2023, 16 (01): : 66 - 75
  • [46] Concentration around the mean for maxima of empirical processes
    Klein, T
    Rio, E
    ANNALS OF PROBABILITY, 2005, 33 (03) : 1060 - 1077
  • [47] New concentration inequalities for suprema of empirical processes
    Lederer, Johannes
    Van De Geer, Sara
    BERNOULLI, 2014, 20 (04) : 2020 - 2038
  • [48] Approximations for hybrids of empirical and partial sums processes
    Horváth, L
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2000, 88 (01) : 1 - 18
  • [49] Comparison inequalities for suprema of bounded empirical processes
    Marchina, Antoine
    ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2018, 23
  • [50] Signature asymptotics, empirical processes, and optimal transport
    Cass, Thomas
    Messadene, Remy
    Turner, William F.
    ELECTRONIC JOURNAL OF PROBABILITY, 2023, 28