Upper bounds on product and multiplier empirical processes

被引:34
|
作者
Mendelson, Shahar [1 ]
机构
[1] IIT, Technion, Dept Math, IL-32000 Haifa, Israel
基金
以色列科学基金会;
关键词
Empirical processes; Generic chaining; RANDOM-VARIABLES; CANONICAL PROCESSES; MOMENTS; TAILS; SUMS;
D O I
10.1016/j.spa.2016.04.019
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We study two empirical processes of special structure: firstly, the centred multiplier process indexed by a class F, f -> vertical bar Sigma(N)(i=1) (xi(i) f(X-i) - Epsilon xi f) vertical bar, where the i.i.d. multipliers (xi(i))(i=1)(N) need not be independent of (X-i)(i=1)(N), and secondly, (f, h) -> vertical bar Sigma(N)(i=1) (f(X-i)h(X-i) -Epsilon fh) vertical bar, the centred product process indexed by the classes F and H. We use chaining methods to obtain high probability upper bounds on the suprema of the two processes using a natural variation of Talagrand's gamma-functionals. (C) 2016 Published by Elsevier B.V.
引用
收藏
页码:3652 / 3680
页数:29
相关论文
共 50 条
  • [31] Upper and lower bounds on the variances of linear combinations of the kth records
    Kozyra, Pawel Marcin
    Rychlik, Tomasz
    STATISTICS, 2018, 52 (01) : 177 - 204
  • [32] Generalization bounds for non-stationary mixing processes
    Kuznetsov, Vitaly
    Mohri, Mehryar
    MACHINE LEARNING, 2017, 106 (01) : 93 - 117
  • [33] Upper and lower bounds of large deviations for some dependent sequences
    Wang, X. J.
    ACTA MATHEMATICA HUNGARICA, 2017, 153 (02) : 490 - 508
  • [34] Spacings-ratio empirical processes
    Paul Deheuvels
    Gérard Derzko
    Periodica Mathematica Hungarica, 2010, 61 : 121 - 164
  • [35] GAUSSIAN APPROXIMATION OF SUPREMA OF EMPIRICAL PROCESSES
    Chernozhukov, Victor
    Chetverikov, Denis
    Kato, Kengo
    ANNALS OF STATISTICS, 2014, 42 (04) : 1564 - 1597
  • [36] A Practical Way for Computing Approximate Lower and Upper Correlation Bounds
    Demirtas, Hakan
    Hedeker, Donald
    AMERICAN STATISTICIAN, 2011, 65 (02) : 104 - 109
  • [37] Ratio limit theorems for empirical processes
    Giné, E
    Koltchinskii, V
    Wellner, JA
    STOCHASTIC INEQUALITIES AND APPLICATIONS, 2003, 56 : 249 - 278
  • [38] SPACINGS-RATIO EMPIRICAL PROCESSES
    Deheuvels, Paul
    Derzko, Gerard
    PERIODICA MATHEMATICA HUNGARICA, 2010, 61 (1-2) : 121 - 164
  • [39] A Class of Special Empirical Processes of Independence
    Abdushukurov, Abdurahim A.
    Kakadjanova, Leyla R.
    JOURNAL OF SIBERIAN FEDERAL UNIVERSITY-MATHEMATICS & PHYSICS, 2015, 8 (02): : 125 - 133
  • [40] Weak convergence of stationary empirical processes
    Radulovic, Dragan
    Wegkamp, Marten
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2018, 194 : 75 - 84