Impact of Brownian Motion on the Analytical Solutions of the Space-Fractional Stochastic Approximate Long Water Wave Equation

被引:19
|
作者
Al-Askar, Farah M. [1 ]
Mohammed, Wael W. [2 ,3 ]
Alshammari, Mohammad [2 ]
机构
[1] Princess Nourah Bint Abdulrahman Univ, Dept Math Sci, Collage Sci, Riyadh 11671, Saudi Arabia
[2] Univ Hail, Fac Sci, Dept Math, Hail 81411, Saudi Arabia
[3] Mansoura Univ, Fac Sci, Dept Math, Mansoura 35516, Egypt
来源
SYMMETRY-BASEL | 2022年 / 14卷 / 04期
关键词
exact fractional solutions; exact stochastic solutions; Riccati equation method; DIFFERENTIAL-EQUATIONS; NONLINEAR EVOLUTION; (G'/G)-EXPANSION; DIFFUSION; NOISE;
D O I
10.3390/sym14040740
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The space-fractional stochastic approximate long water wave equation (SFSALWWE) is considered in this work. The Riccati equation method is used to get analytical solutions of the SFSALWWE. This equation has never been examined with stochastic term and fractional space at the same time. In general, the noise term that preserves the symmetry reduces the domain of instability. To check the impact of Brownian motion on these solutions, we use a MATLAB package to plot 3D and 2D graphs for some analytical fractional stochastic solutions.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] Analytical solutions of fractional wave equation with memory effect using the fractional derivative with exponential kernel
    Cuahutenango-Barro, B.
    Taneco-Hernandez, M. A.
    Lv, Yu-Pei
    Gomez-Aguilar, J. F.
    Osman, M. S.
    Jahanshahi, Hadi
    Aly, Ayman A.
    RESULTS IN PHYSICS, 2021, 25
  • [32] Approximate Controllability via Resolvent Operators of Sobolev-Type Fractional Stochastic Integrodifferential Equations with Fractional Brownian Motion and Poisson Jumps
    Ahmed, Hamdy M.
    BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2019, 45 (04) : 1045 - 1059
  • [33] The exact solutions of the stochastic fractional-space Allen-Cahn equation
    Albosaily, Sahar
    Mohammed, Wael W.
    Hamza, Amjad E.
    El-Morshedy, Mahmoud
    Ahmad, Hijaz
    OPEN PHYSICS, 2022, 20 (01): : 23 - 29
  • [34] Analytical Approximate Solution of Space-Time Fractional Diffusion Equation with a Moving Boundary Condition
    Das, Subir
    Kumar, Rajnesh
    Gupta, Praveen Kumar
    ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES, 2011, 66 (05): : 281 - 288
  • [35] The Analytical Solutions of the Stochastic Fractional RKL Equation via Jacobi Elliptic Function Method
    Al-Askar, Farah M.
    Mohammed, Wael W.
    ADVANCES IN MATHEMATICAL PHYSICS, 2022, 2022
  • [36] Existence results of self-similar solutions of the space-fractional diffusion equation involving the generalized Riesz-Caputo fractional derivative
    Ouagueni, Nora
    Arioua, Yacine
    Benhamidouche, Noureddine
    ANNALES UNIVERSITATIS PAEDAGOGICAE CRACOVIENSIS-STUDIA MATHEMATICA, 2023, 22 (01) : 49 - 74
  • [37] Analytical and numerical solutions of time and space fractional advection-diffusion-reaction equation
    Jannelli, Alessandra
    Ruggieri, Marianna
    Speciale, Maria Paola
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2019, 70 : 89 - 101
  • [38] Lie symmetry, exact solutions and conservation laws of time fractional Black-Scholes equation derived by the fractional Brownian motion
    Yu, Jicheng
    JOURNAL OF APPLIED ANALYSIS, 2024, 30 (01) : 137 - 145
  • [39] The solitary wave solutions of the stochastic Heisenberg ferromagnetic spin chain equation using two different analytical methods
    Al-Askar, Farah M.
    FRONTIERS IN PHYSICS, 2023, 11
  • [40] Global existence and blow-up of generalized self-similar solutions for a space-fractional diffusion equation with mixed conditions
    Nouioua, Farid
    Basti, Bilal
    ANNALES UNIVERSITATIS PAEDAGOGICAE CRACOVIENSIS-STUDIA MATHEMATICA, 2021, 20 (01) : 43 - 56