Rozansky-Witten invariants via Atiyah classes

被引:101
作者
Kapranov, M [1 ]
机构
[1] Northwestern Univ, Dept Math, Evanston, IL 60208 USA
基金
美国国家科学基金会;
关键词
hyper-Kahler manifolds; operads; Atiyah classes;
D O I
10.1023/A:1000664527238
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Recently, L. Rozansky and E. Witten associated to any hyper-Kahler manifold X a system of 'weights' (numbers, one for each trivalent graph) and used them to construct invariants of topological 3-manifolds. We give a simple cohomological definition of these weights in terms of the Atiyah class of,X (the obstruction to the existence of a holomorphic connection). We show that the analogy between the tensor of curvature of a hyper-Kahler metric and the tensor of structure constants of a Lie algebra observed by Rozansky and Witten, holds in fact for any complex manifold, if we work at the level of cohomology and for any Kahler manifold, if we work at the level of Dolbeault cochains. As an outcome of our considerations, we give a formula for Rozansky-Witten classes using any Kahler metric on a holomorphic symplectic manifold.
引用
收藏
页码:71 / 113
页数:43
相关论文
共 23 条
  • [1] ADAMS JF, 1977, INFINITE LOOP SPACES
  • [2] ANGENIOL B, 1985, ASTERISQUE, P130
  • [3] Atiyah M. F., 1957, T AM MATH SOC, V85, P181
  • [4] KODAIRA-SPENCER THEORY OF GRAVITY AND EXACT RESULTS FOR QUANTUM STRING AMPLITUDES
    BERSHADSKY, M
    CECOTTI, S
    OOGURI, H
    VAFA, C
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1994, 165 (02) : 311 - 427
  • [5] BOTT R, 1975, DIFFERENTIAL OPERATO, P49
  • [6] ISOMETRIC IMBEDDING OF COMPLEX MANIFOLDS
    CALABI, E
    [J]. ANNALS OF MATHEMATICS, 1953, 58 (01) : 1 - 23
  • [7] Epstein D.B.A., 1975, J. Differential Geometry, V10, P631
  • [8] FUKS DB, 1983, FUNCT ANAL APPL+, V17, P295
  • [9] Gabrielov A. M., 1975, FUNCT ANAL APPL, V9, P103, DOI 10.1007/BF01075446
  • [10] Gel'fand I M., 1972, Funct. Anal. Appl, V6, P9, DOI [10.1007/BF01075503, DOI 10.1007/BF01075503]