Provisioning in Multi-Band Optical Networks

被引:101
作者
Sambo, Nicola [1 ]
Ferrari, Alessio [2 ]
Napoli, Antonio [3 ]
Costa, Nelson [4 ]
Pedro, Joao [4 ,5 ]
Sommerkorn-Krombholz, Bernd [3 ]
Castoldi, Piero [1 ]
Curri, Vittorio [2 ]
机构
[1] Scuola Super Sant Anna, I-56124 Pisa, Italy
[2] Politecn Torino, I-10129 Turin, Italy
[3] Infinera, D-81541 Munich, Germany
[4] Infinera Unipessoal Lda, P-2790078 Carnaxide, Portugal
[5] Inst Super Tecn, Inst Telecomunicacoes, P-1049001 Lisbon, Portugal
关键词
Provisioning; blocking probability; multi-band; generalized Gaussian noise model; SPECTRUM; ASSIGNMENT; MODEL;
D O I
10.1109/JLT.2020.2983227
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Multi-band (MB) optical transmission promises to extend the lifetime of existing optical fibre infrastructures, which usually transmit within the C-band only, with C$\rm +$L-band being also used in a few high-capacity links. In this work, we propose a physical-layer-aware provisioning scheme tailored for MB systems. This solution utilizes the physical layer information to estimate, by means of the generalized Gaussian noise (GGN) model, the generalized signal-to-noise ratio (GSNR). The GSNR is evaluated assuming transmission up to the entire low-loss spectrum of optical fiber, i.e., from 1260 to 1625 nm. We show that MB transmission may lead to a considerable reduction of the blocking probability, despite the increased transmission penalties resulting from using additional optical fiber transmission bands. Transponders supporting several modulation formats (polarization multiplexing - PM - quadrature phase shift keying - PM-QPSK -, PM 8 quadrature amplitude modulation - PM-8QAM -, and PM-16QAM) from O- to L-band are considered. An increase of the accommodated traffic with respect to the C-band transmission only case, ranging from about four times with S$\rm +$C$\rm +$L-band and up to more than six times when transmitting from E to L-band is reported.
引用
收藏
页码:2598 / 2605
页数:8
相关论文
共 40 条
[1]  
[Anonymous], 2018, WINDSTREAM DEPLOYS I
[2]  
[Anonymous], 2009, HDB OPTICAL FIBRES C
[3]  
[Anonymous], 2014, CISC VIS NETW IND GL
[4]  
[Anonymous], 2017, Cisco visual networking index: global mobile data traffic forecast update, 2016-2021 White Paper
[5]   Tm-doped fiber amplifiers for 1470-nm-band WDM signals [J].
Aozasa, S ;
Sakamoto, T ;
Kanamori, T ;
Hoshino, K ;
Kobayashi, K ;
Shimizu, M .
IEEE PHOTONICS TECHNOLOGY LETTERS, 2000, 12 (10) :1331-1333
[6]  
Bendimerad D. F., 2013, P 39 EUR C EXH OPT C, P1
[7]   Raman amplification for fiber communications systems [J].
Bromage, J .
JOURNAL OF LIGHTWAVE TECHNOLOGY, 2004, 22 (01) :79-93
[8]   Physical Layer Performance of Multi-Band Optical Line Systems Using Raman Amplification [J].
Cantono, M. ;
Ferrari, A. ;
Pilori, D. ;
Virgillito, E. ;
Auge, J. L. ;
Curri, V. .
JOURNAL OF OPTICAL COMMUNICATIONS AND NETWORKING, 2019, 11 (01) :A103-A110
[9]   On the Interplay of Nonlinear Interference Generation With Stimulated Raman Scattering for QoT Estimation [J].
Cantono, Mattia ;
Pilori, Dario ;
Ferrari, Alessio ;
Catanese, Clara ;
Thouras, Jordane ;
Auge, Jean-Luc ;
Curri, Vittorio .
JOURNAL OF LIGHTWAVE TECHNOLOGY, 2018, 36 (15) :3131-3141
[10]   Routing and Spectrum Allocation in Elastic Optical Networks: A Tutorial [J].
Chatterjee, Bijoy Chand ;
Sarma, Nityananda ;
Oki, Eiji .
IEEE COMMUNICATIONS SURVEYS AND TUTORIALS, 2015, 17 (03) :1776-1800