Systematic review with meta-analysis: artificial intelligence in the diagnosis of oesophageal diseases

被引:33
作者
Visaggi, Pierfrancesco [1 ]
Barberio, Brigida [2 ]
Gregori, Dario [3 ]
Azzolina, Danila [3 ,4 ]
Martinato, Matteo [3 ]
Hassan, Cesare [5 ]
Sharma, Prateek [6 ,7 ]
Savarino, Edoardo [2 ]
Bortoli, Nicola [1 ]
机构
[1] Univ Pisa, Dept Translat Res & New Technol Med & Surg, Gastroenterol Unit, Pisa, Italy
[2] Univ Padua, Div Gastroenterol, Dept Surg Oncol & Gastroenterol, Padua, Italy
[3] Univ Padua, Unit Biostat Epidemiol & Publ Hlth, Dept Cardiac Thorac Vasc Sci & Publ Hlth, Padua, Italy
[4] Univ Ferrara, Dept Med Sci, Ferrara, Italy
[5] Nuovo Regina Margherita Hosp, Digest Endoscopy Unit, Rome, Italy
[6] Univ Kansas, Sch Med, Kansas City, MO USA
[7] VA Med Ctr, Kansas City, MO USA
关键词
artificial intelligence; Barrett's oesophagus; gastroesophageal reflux disease; gastrointestinal endoscopy; IPCL; oesophageal cancer; SQUAMOUS-CELL CARCINOMA; COMPUTER-AIDED DETECTION; BAND IMAGING ENDOSCOPY; NEURAL-NETWORKS; NARROW-BAND; BARRETTS NEOPLASIA; ACCURACY; CLASSIFICATION; PREDICTION; LESIONS;
D O I
10.1111/apt.16778
中图分类号
R57 [消化系及腹部疾病];
学科分类号
摘要
Background Artificial intelligence (AI) has recently been applied to endoscopy and questionnaires for the evaluation of oesophageal diseases (ODs). Aim We performed a systematic review with meta-analysis to evaluate the performance of AI in the diagnosis of malignant and benign OD. Methods We searched MEDLINE, EMBASE, EMBASE Classic and the Cochrane Library. A bivariate random-effect model was used to calculate pooled diagnostic efficacy of AI models and endoscopists. The reference tests were histology for neoplasms and the clinical and instrumental diagnosis for gastro-oesophageal reflux disease (GERD). The pooled area under the summary receiver operating characteristic (AUROC), sensitivity, specificity, positive and negative likelihood ratio (PLR and NLR) and diagnostic odds ratio (DOR) were estimated. Results For the diagnosis of Barrett's neoplasia, AI had AUROC of 0.90, sensitivity 0.89, specificity 0.86, PLR 6.50, NLR 0.13 and DOR 50.53. AI models' performance was comparable with that of endoscopists (P = 0.35). For the diagnosis of oesophageal squamous cell carcinoma, the AUROC, sensitivity, specificity, PLR, NLR and DOR were 0.97, 0.95, 0.92, 12.65, 0.05 and DOR 258.36, respectively. In this task, AI performed better than endoscopists although without statistically significant differences. In the detection of abnormal intrapapillary capillary loops, the performance of AI was: AUROC 0.98, sensitivity 0.94, specificity 0.94, PLR 14.75, NLR 0.07 and DOR 225.83. For the diagnosis of GERD based on questionnaires, the AUROC, sensitivity, specificity, PLR, NLR and DOR were 0.99, 0.97, 0.97, 38.26, 0.03 and 1159.6, respectively. Conclusions AI demonstrated high performance in the clinical and endoscopic diagnosis of OD.
引用
收藏
页码:528 / 540
页数:13
相关论文
共 72 条
  • [1] Narrow band imaging versus lugol chromoendoscopy to diagnose squamous cell carcinoma of the esophagus: a systematic review and meta-analysis
    Ananias Morita, Flavio Hiroshi
    Bernardo, Wanderley Marques
    Ide, Edson
    Paula Rocha, Rodrigo Silva
    Martins Aquino, Julio Cesar
    Minata, Mauricio Kazuyoshi
    Yamazaki, Kendi
    Marques, Sergio Barbosa
    Sakai, Paulo
    Hourneaux de Moura, Eduardo Guimaraes
    [J]. BMC CANCER, 2017, 17
  • [2] Arribas J., 2020, GUT
  • [3] Computer-aided diagnosis of esophageal cancer and neoplasms in endoscopic images: a systematic review and meta-analysis of diagnostic test accuracy
    Bang, Chang Seok
    Lee, Jae Jun
    Baik, Gwang Ho
    [J]. GASTROINTESTINAL ENDOSCOPY, 2021, 93 (05) : 1006 - +
  • [4] Artificial intelligence for polyp detection during colonoscopy: a systematic review and meta-analysis
    Barua, Ishita
    Vinsard, Daniela Guerrero
    Jodal, Henriette C.
    Loberg, Magnus
    Kalager, Mette
    Holme, Oyvind
    Misawa, Masashi
    Bretthauer, Michael
    Mori, Yuichi
    [J]. ENDOSCOPY, 2021, 53 (03) : 277 - 284
  • [5] Using a deep learning system in endoscopy for screening of early esophageal squamous cell carcinoma (with video)
    Cai, Shi-Lun
    Li, Bing
    Tan, Wei-Min
    Niu, Xue-Jing
    Yu, Hon-Ho
    Yao, Li-Qing
    Zhou, Ping-Hong
    Yan, Bo
    Zhong, Yun-Shi
    [J]. GASTROINTESTINAL ENDOSCOPY, 2019, 90 (05) : 745 - +
  • [6] Deep learning algorithm detection of Barrett's neoplasia with high accuracy during live endoscopic procedures: a pilot study
    de Groof, Albert J.
    Struyvenberg, Maarten R.
    Fockens, Kiki N.
    van der Putten, Joost
    van der Sommen, Fons
    Boers, Tim G.
    Zinger, Sveta
    Bisschops, Raf
    de With, Peter H.
    Pouw, Roos E.
    Curvers, Wouter L.
    Schoon, Erik J.
    Bergman, Jacques J. G. H. M.
    [J]. GASTROINTESTINAL ENDOSCOPY, 2020, 91 (06) : 1242 - 1250
  • [7] Deep-Learning System Detects Neoplasia in Patients With Barrett's Esophagus With Higher Accuracy Than Endoscopists in a Multistep Training and Validation Study With Benchmarking
    de Groof, Albert J.
    Struyvenberg, Maarten R.
    van der Putten, Joost
    van der Sommen, Fons
    Fockens, Kiki N.
    Curvers, Wouter L.
    Zinger, Sveta
    Pouw, Roos E.
    Coron, Emmanuel
    Baldaque-Silva, Francisco
    Pech, Oliver
    Weusten, Bas
    Meining, Alexander
    Neuhaus, Horst
    Bisschops, Raf
    Dent, John
    Schoon, Erik J.
    de With, Peter H.
    Bergman, Jacques J.
    [J]. GASTROENTEROLOGY, 2020, 158 (04) : 915 - +
  • [8] The Argos project: The development of a computer-aided detection system to improve detection of Barrett's neoplasia on white light endoscopy
    de Groof, Jeroen
    van der Sommen, Fons
    van der Putten, Joost
    Struyvenberg, Maarten R.
    Zinger, Sveta
    Curvers, Muter L.
    Pech, Oliver
    Meining, Alexander
    Neuhaus, Horst
    Bisschops, Raf
    Schoon, Erik J.
    de With, Peter H.
    Bergman, Jacques J.
    [J]. UNITED EUROPEAN GASTROENTEROLOGY JOURNAL, 2019, 7 (04) : 538 - 547
  • [9] Assisting Barrett's esophagus identification using endoscopic data augmentation based on Generative Adversarial Networks
    de Souza Jr, Luis A.
    Passos, Leandro A.
    Mendel, Robert
    Ebigbo, Alanna
    Probst, Andreas
    Messmann, Helmut
    Palm, Christoph
    Papa, Joao P.
    [J]. COMPUTERS IN BIOLOGY AND MEDICINE, 2020, 126
  • [10] The performance of tests of publication bias and other sample size effects in systematic reviews of diagnostic test accuracy was assessed
    Deeks, JJ
    Macaskill, P
    Irwig, L
    [J]. JOURNAL OF CLINICAL EPIDEMIOLOGY, 2005, 58 (09) : 882 - 893