The Epistemology of Machine Learning

被引:0
作者
Bai, Huiren [1 ]
机构
[1] Zhejiang Univ, Dept Philosophy, 866 Yuhangtang Rd, Hangzhou 310058, Peoples R China
来源
FILOSOFIJA-SOCIOLOGIJA | 2022年 / 33卷 / 01期
关键词
machine learning; epistemological foundation; transparency; interpretabil-ity; machine knowledge;
D O I
暂无
中图分类号
B [哲学、宗教];
学科分类号
01 ; 0101 ;
摘要
This paper argues that machine learning is a knowledge-producing enterprise, since we are increasingly relying on artificial intelligence. But the knowledge discovered by machine is completely beyond human experience and human reason, becoming al -most incomprehensible to humans. I argue that standard calls for interpretability that focus on the epistemic inscrutability of black-box machine learning may be misplaced. The problems of transparency and interpretability of machine learning stem from how we perceive the possibility of 'machine knowledge'. In other words, the justification for machine knowledge does not need to include transparency and interpretability. There-fore, I am going to examine some sort of machine learning epistemology and provide three possible justifications for machine knowledge, which are formal justification, model justification and practical justification.
引用
收藏
页码:40 / 48
页数:9
相关论文
共 15 条
  • [1] Explainable Artificial Intelligence (XAI): Concepts, taxonomies, opportunities and challenges toward responsible AI
    Barredo Arrieta, Alejandro
    Diaz-Rodriguez, Natalia
    Del Ser, Javier
    Bennetot, Adrien
    Tabik, Siham
    Barbado, Alberto
    Garcia, Salvador
    Gil-Lopez, Sergio
    Molina, Daniel
    Benjamins, Richard
    Chatila, Raja
    Herrera, Francisco
    [J]. INFORMATION FUSION, 2020, 58 : 82 - 115
  • [2] How the machine 'thinks': Understanding opacity in machine learning algorithms
    Burrell, Jenna
    [J]. BIG DATA & SOCIETY, 2016, 3 (01): : 1 - 12
  • [3] Machine Learning Interpretability: A Survey on Methods and Metrics
    Carvalho, Diogo, V
    Pereira, Eduardo M.
    Cardoso, Jaime S.
    [J]. ELECTRONICS, 2019, 8 (08)
  • [4] Algorithmic Decision-Making Based on Machine Learning from Big Data: Can Transparency Restore Accountability?
    de Laat P.B.
    [J]. Philosophy & Technology, 2018, 31 (4) : 525 - 541
  • [5] Chemist versus Machine: Traditional Knowledge versus Machine Learning Techniques
    George, Janine
    Hautier, Geoffroy
    [J]. TRENDS IN CHEMISTRY, 2021, 3 (02): : 86 - 95
  • [6] Katuwal G.J., 2016, ARXIV161009045
  • [7] The Sixth Visual Object Tracking VOT2018 Challenge Results
    Kristan, Matej
    Leonardis, Ales
    Matas, Jiri
    Felsberg, Michael
    Pflugfelder, Roman
    Zajc, Luka Cehovin
    Vojir, Tomas
    Bhat, Goutam
    Lukezic, Alan
    Eldesokey, Abdelrahman
    Fernandez, Gustavo
    Garcia-Martin, Alvaro
    Iglesias-Arias, Alvaro
    Alatan, A. Aydin
    Gonzalez-Garcia, Abel
    Petrosino, Alfredo
    Memarmoghadam, Alireza
    Vedaldi, Andrea
    Muhic, Andrej
    He, Anfeng
    Smeulders, Arnold
    Perera, Asanka G.
    Li, Bo
    Chen, Boyu
    Kim, Changick
    Xu, Changsheng
    Xiong, Changzhen
    Tian, Cheng
    Luo, Chong
    Sun, Chong
    Hao, Cong
    Kim, Daijin
    Mishra, Deepak
    Chen, Deming
    Wang, Dong
    Wee, Dongyoon
    Gavves, Efstratios
    Gundogdu, Erhan
    Velasco-Salido, Erik
    Khan, Fahad Shahbaz
    Yang, Fan
    Zhao, Fei
    Li, Feng
    Battistone, Francesco
    De Ath, George
    Subrahmanyam, Gorthi R. K. S.
    Bastos, Guilherme
    Ling, Haibin
    Galoogahi, Hamed Kiani
    Lee, Hankyeol
    [J]. COMPUTER VISION - ECCV 2018 WORKSHOPS, PT I, 2019, 11129 : 3 - 53
  • [8] How to Interpret Machine Knowledge
    Li, Fashen
    Li, Lian
    Yin, Jianping
    Zhang, Yong
    Zhou, Qingguo
    Kuang, Kun
    [J]. ENGINEERING, 2020, 6 (03) : 218 - 220
  • [9] Explainable AI: A Review of Machine Learning Interpretability Methods
    Linardatos, Pantelis
    Papastefanopoulos, Vasilis
    Kotsiantis, Sotiris
    [J]. ENTROPY, 2021, 23 (01) : 1 - 45
  • [10] Pearl J., 2018, The Book of Why