Experimental demonstration of memory-enhanced quantum communication

被引:381
作者
Bhaskar, M. K. [1 ]
Riedinger, R. [1 ]
Machielse, B. [1 ]
Levonian, D. S. [1 ]
Nguyen, C. T. [1 ]
Knall, E. N. [2 ]
Park, H. [1 ,3 ]
Englund, D. [4 ]
Loncar, M. [2 ]
Sukachev, D. D. [1 ]
Lukin, M. D. [1 ]
机构
[1] Harvard Univ, Dept Phys, Cambridge, MA 02138 USA
[2] Harvard Univ, John A Paulson Sch Engn & Appl Sci, Cambridge, MA 02138 USA
[3] Harvard Univ, Dept Chem & Chem Biol, Cambridge, MA 02138 USA
[4] MIT, Elect Res Lab, Cambridge, MA 02139 USA
关键词
ENTANGLEMENT; PROOF;
D O I
10.1038/s41586-020-2103-5
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The ability to communicate quantum information over long distances is of central importance in quantum science and engineering(1). Although some applications of quantum communication such as secure quantum key distribution(2,3) are already being successfully deployed(4-7), their range is currently limited by photon losses and cannot be extended using straightforward measure-and-repeat strategies without compromising unconditional security(8). Alternatively, quantum repeaters(9), which utilize intermediate quantum memory nodes and error correction techniques, can extend the range of quantum channels. However, their implementation remains an outstanding challenge(10-16), requiring a combination of efficient and high-fidelity quantum memories, gate operations, and measurements. Here we use a single solid-state spin memory integrated in a nanophotonic diamond resonator(17-19) to implement asynchronous photonic Bell-state measurements, which are a key component of quantum repeaters. In a proof-of-principle experiment, we demonstrate high-fidelity operation that effectively enables quantum communication at a rate that surpasses the ideal loss-equivalent direct-transmission method while operating at megahertz clock speeds. These results represent a crucial step towards practical quantum repeaters and large-scale quantum networks(20,21). A solid-state spin memory is used to demonstrate quantum repeater functionality, which has the potential to overcome photon losses involved in long-distance transmission of quantum information.
引用
收藏
页码:60 / +
页数:17
相关论文
共 40 条
  • [1] Freestanding nanostructures via reactive ion beam angled etching
    Atikian, Haig A.
    Latawiec, Pawel
    Burek, Michael J.
    Sohn, Young-Ik
    Meesala, Srujan
    Gravel, Normand
    Kouki, Ammar B.
    Loncar, Marko
    [J]. APL PHOTONICS, 2017, 2 (05)
  • [2] BENNETT C. H., 1984, PROC IEEE INT C COMP, V175, P8, DOI DOI 10.1016/J.TCS.2014.05.025
  • [3] Quantum cryptographic network based on quantum memories
    Biham, E
    Huttner, B
    Mor, T
    [J]. PHYSICAL REVIEW A, 1996, 54 (04): : 2651 - 2658
  • [4] Secure Quantum Key Distribution over 421 km of Optical Fiber
    Boaron, Alberto
    Boso, Gianluca
    Rusca, Davide
    Vulliez, Cedric
    Autebert, Claire
    Caloz, Misael
    Perrenoud, Matthieu
    Gras, Gaetan
    Bussieres, Felix
    Li, Ming-Jun
    Nolan, Daniel
    Martin, Anthony
    Zbinden, Hugo
    [J]. PHYSICAL REVIEW LETTERS, 2018, 121 (19)
  • [5] Borregaard J., 2019, ONE WAY QUANTUM REPE
  • [6] Side-Channel-Free Quantum Key Distribution
    Braunstein, Samuel L.
    Pirandola, Stefano
    [J]. PHYSICAL REVIEW LETTERS, 2012, 108 (13)
  • [7] Quantum repeaters:: The role of imperfect local operations in quantum communication
    Briegel, HJ
    Dür, W
    Cirac, JI
    Zoller, P
    [J]. PHYSICAL REVIEW LETTERS, 1998, 81 (26) : 5932 - 5935
  • [8] Fiber-Coupled Diamond Quantum Nanophotonic Interface
    Burek, Michael J.
    Meuwly, Charles
    Evans, Ruffin E.
    Bhaskar, Mihir K.
    Sipahigil, Alp
    Meesala, Srujan
    Machielse, Bartholomeus
    Sukachev, Denis D.
    Nguyen, Christian T.
    Pacheco, Jose L.
    Bielejec, Edward
    Lukin, Mikhail D.
    Loncar, Marko
    [J]. PHYSICAL REVIEW APPLIED, 2017, 8 (02):
  • [9] High quality-factor optical nanocavities in bulk single-crystal diamond
    Burek, Michael J.
    Chu, Yiwen
    Liddy, Madelaine S. Z.
    Patel, Parth
    Rochman, Jake
    Meesala, Srujan
    Hong, Wooyoung
    Quan, Qimin
    Lukin, Mikhail D.
    Loncar, Marko
    [J]. NATURE COMMUNICATIONS, 2014, 5
  • [10] Functional quantum nodes for entanglement distribution over scalable quantum networks
    Chou, Chin-Wen
    Laurat, Julien
    Deng, Hui
    Choi, Kyung Soo
    de Riedmatten, Hugues
    Felinto, Daniel
    Kimble, H. Jeff
    [J]. SCIENCE, 2007, 316 (5829) : 1316 - 1320