Generation of Site-Specific Mutations in the Rat Genome Via CRISPR/Cas9

被引:10
作者
Guan, Yuting [1 ,2 ]
Shao, Yanjiao [1 ,2 ]
Li, Dali [1 ,2 ]
Liu, Mingyao [1 ,2 ]
机构
[1] East China Normal Univ, Inst Biomed Sci, Shanghai Key Lab Regulatory Biol, Shanghai, Peoples R China
[2] East China Normal Univ, Sch Life Sci, Shanghai, Peoples R China
来源
USE OF CRISPR/CAS9, ZFNS, AND TALENS IN GENERATING SITE-SPECIFIC GENOME ALTERATIONS | 2014年 / 546卷
关键词
SYSTEM; DNA;
D O I
10.1016/B978-0-12-801185-0.00014-3
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
The laboratory rat is a valuable model organism for basic biological studies and drug development. However, due to the lack of genetic tools for site-specific genetic modification in the rat genome, more and more researchers chose the mouse as their favored mammalian models due to the sophisticated embryonic stem cell-based gene-targeting techniques available. Recently, engineered nucleases, including zinc finger nucleases, transcription activator-like effector nucleases, and CRISPR/Cas9 systems, have been adapted to generate knockout rats efficiently. The purpose of this section is to provide detailed procedures for the generation of site-specific mutations in the rat genome through injection of Cas9/sgRNA into one-cell embryos.
引用
收藏
页码:297 / 317
页数:21
相关论文
共 50 条
  • [21] The CRISPR/Cas9 system and its applications in crop genome editing
    Bao, Aili
    Burritt, David J.
    Chen, Haifeng
    Zhou, Xinan
    Cao, Dong
    Lam-Son Phan Tran
    [J]. CRITICAL REVIEWS IN BIOTECHNOLOGY, 2019, 39 (03) : 321 - 336
  • [22] Generation of an in vitro model of β-thalassemia using the CRISPR/Cas9 genome editing system
    Ajami, Monireh
    Atashi, Amir
    Kaviani, Saeid
    Kiani, Jafar
    Soleimani, Masoud
    [J]. JOURNAL OF CELLULAR BIOCHEMISTRY, 2020, 121 (02) : 1420 - 1430
  • [23] Rapid generation of genetic diversity by multiplex CRISPR/Cas9 genome editing in rice
    Shen, Lan
    Hua, Yufeng
    Fu, Yaping
    Li, Jian
    Liu, Qing
    Jiao, Xiaozhen
    Xin, Gaowei
    Wang, Junjie
    Wang, Xingchun
    Yan, Changjie
    Wang, Kejian
    [J]. SCIENCE CHINA-LIFE SCIENCES, 2017, 60 (05) : 506 - 515
  • [24] Photoactivatable CRISPR/Cas9 System
    Akhmetova, E. A.
    Golyshev, V. M.
    Vokhtantcev, I. P.
    Meschaninova, M., I
    Venyaminova, A. G.
    Novopashina, D. S.
    [J]. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY, 2021, 47 (02) : 496 - 504
  • [25] Examination of CRISPR/Cas9 design tools and the effect of target site accessibility on Cas9 activity
    Lee, Ciaran M.
    Davis, Timothy H.
    Bao, Gang
    [J]. EXPERIMENTAL PHYSIOLOGY, 2018, 103 (04) : 456 - 460
  • [26] In vivo therapeutic genome editing via CRISPR/Cas9 magnetoplexes for myocardial infarction
    Park, Hanseul
    Kim, Dongyoon
    Cho, Byounggook
    Byun, Junho
    Kim, Yong Sook
    Ahn, Youngkeun
    Hur, Jin
    Oh, Yu-Kyoung
    Kim, Jongpil
    [J]. BIOMATERIALS, 2022, 281
  • [27] Recent Advances in Genome Editing Using CRISPR/Cas9
    Ding, Yuduan
    Li, Hong
    Chen, Ling-Ling
    Xie, Kabin
    [J]. FRONTIERS IN PLANT SCIENCE, 2016, 7
  • [28] Treatment of Dyslipidemia Using CRISPR/Cas9 Genome Editing
    Chadwick, Alexandra C.
    Musunuru, Kiran
    [J]. CURRENT ATHEROSCLEROSIS REPORTS, 2017, 19 (07)
  • [29] Applications of CRISPR/Cas9 technology for modification of the plant genome
    Deb, Sohini
    Choudhury, Amrita
    Kharbyngar, Banridor
    Satyawada, Rama Rao
    [J]. GENETICA, 2022, 150 (01) : 1 - 12
  • [30] CRISPR/Cas9 Immune System as a Tool for Genome Engineering
    Hryhorowicz, Magdalena
    Lipianki, Daniel
    Zeyland, Joanna
    Slomski, Ryszard
    [J]. ARCHIVUM IMMUNOLOGIAE ET THERAPIAE EXPERIMENTALIS, 2017, 65 (03) : 233 - 240