A note on a parameterized singular perturbation problem

被引:30
作者
Amiraliyev, GM [1 ]
Duru, H [1 ]
机构
[1] Yuzuncu Yil Univ, Fac Art & Sci, Dept Math, TR-65080 Van, Turkey
关键词
parameterized problem; singular perturbation; uniform convergence; finite difference scheme; Shishkin mesh;
D O I
10.1016/j.cam.2004.11.047
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a uniform finite difference method on Shishkin mesh for a quasilinear first-order singularly perturbed boundary value problem (BVP) depending on a parameter. We prove that the method is first-order convergent except for a logarithmic factor, in the discrete maximum norm, independently of the perturbation parameter. Numerical experiments support these theoretical results. (c) 2004 Elsevier B.V All rights reserved.
引用
收藏
页码:233 / 242
页数:10
相关论文
共 18 条
[1]  
Amiraliyev G.M., 1990, USSR DIFFER EQUAT, V26, P2146
[2]  
Amiraliyev GM, 2003, COMPUT MATH APPL, V46, P695, DOI [10.1016/S0898-1221(03)90135-0, 10.1016/S0898-1221(03)00278-5]
[3]   A uniformly convergent finite difference method for a singularly perturbed initial value problem [J].
Amiraliyev, GM ;
Duru, H .
APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION, 1999, 20 (04) :379-387
[4]  
Doolan E.P., 1980, Uniform Numerical Methods for Problems with Initial and Boundary Layers
[5]  
Farrell P.A., 2000, Applied Mathematics (Boca Raton)
[6]  
FARRELL PA, 1991, P 13 IMACS WORLD C C, P501
[7]   PARAMETRIZED SINGULARLY PERTURBED BOUNDARY-VALUE-PROBLEMS [J].
FECKAN, M .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1994, 188 (02) :426-435
[8]  
Gulle A., 1998, T ACAD SCI AZERB SER, V18, P34
[9]  
JANKOWSKI T, 2001, MATH NOTES MISCOLC, V2, P31
[10]  
Jankowski T., 1997, J APPL MATH STOCH AN, V10, P273, DOI DOI 10.1155/S1048953397000348