Doubly probabilistic representation for the stochastic porous media type equation

被引:3
作者
Barbu, Viorel [1 ]
Roeckner, Michael [2 ]
Russo, Francesco [3 ]
机构
[1] Alexandru Ioan Cuza Univ, RO-6600 Iasi, Romania
[2] Univ Bielefeld, Fak Math, D-33615 Bielefeld, Germany
[3] Univ Paris Saclay, ENSTA ParisTech, Unite Math Appl, 828 Blvd Marechaux, F-91120 Palaiseau, France
来源
ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES | 2017年 / 53卷 / 04期
基金
美国国家科学基金会;
关键词
Stochastic partial differential equations; Infinite volume; Singular porous media type equation; Doubly probabilistic representation; Multiplicative noise; Singular random Fokker-Planck type equation; Filtering; UNIQUENESS; EXISTENCE;
D O I
10.1214/16-AIHP783
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The purpose of the present paper consists in proposing and discussing a doubly probabilistic representation for a stochastic porous media equation in the whole space R-1 perturbed by a multiplicative colored noise. For almost all random realizations omega, one associates a stochastic differential equation in law with random coefficients, driven by an independent Brownian motion.
引用
收藏
页码:2043 / 2073
页数:31
相关论文
共 28 条
  • [1] [Anonymous], 1975, ANN SCUOLA NORM-SCI
  • [2] [Anonymous], FUNDAMENTAL PRINCIPL
  • [3] [Anonymous], 2006, CLASSICS MATH
  • [4] [Anonymous], 2007, LECT NOTES MATH
  • [5] Barbu V, 2010, SPRINGER MONOGR MATH, P1, DOI 10.1007/978-1-4419-5542-5
  • [6] Barbu V., 2014, ARXIV14045120
  • [7] Barbu V., 1993, MATH SCI ENG, V190
  • [8] Barbu V, 2008, INDIANA U MATH J, V57, P187
  • [9] Stochastic porous media equations in Rd
    Barbu, Viorel
    Roeckner, Michael
    Russo, Francesco
    [J]. JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2015, 103 (04): : 1024 - 1052
  • [10] Probabilistic representation for solutions of an irregular porous media type equation: the degenerate case
    Barbu, Viorel
    Roeckner, Michael
    Russo, Francesco
    [J]. PROBABILITY THEORY AND RELATED FIELDS, 2011, 151 (1-2) : 1 - 43