共 41 条
A quantitative structure-mobility relationship of organic acids using solvation parameters
被引:6
作者:
Hamidi, Hossein
[1
]
Hamidi, Samin
[2
]
Vaez, Haleh
[3
]
机构:
[1] Univ Tabriz, Dept Control Engn, Fac Elect & Comp Engn, Tabriz, Iran
[2] Tabriz Univ Med Sci, Food & Drug Safety Res Ctr, Tabriz, Iran
[3] Tabriz Univ Med Sci, Dept Pharmacol, Fac Pharm, Tabriz, Iran
关键词:
Abraham parameters;
ANN;
electrophoretic mobility;
MLR;
organic acids;
quantitative structure property relationship;
STRUCTURE-PROPERTY RELATIONSHIP;
CAPILLARY-ZONE-ELECTROPHORESIS;
LIQUID-LIQUID MICROEXTRACTION;
CARBOXYLIC-ACIDS;
PREDICTION;
WATER;
VALIDATION;
VERAPAMIL;
MODELS;
PHASE;
D O I:
10.1080/10826076.2017.1398171
中图分类号:
Q5 [生物化学];
学科分类号:
071010 ;
081704 ;
摘要:
A quantitative structure-mobility relationship (QSMR) is proposed to estimate the electrophoretic mobility of diverse sets of analyses in capillary zone electrophoresis using Abraham solvation parameters of analyses, such as the excess molar refraction, polarizability, hydrogen bond acidity, basicity, and molar volume. QSMR was developed for prediction the electrophoretic mobility of 231 organic acids using the solvation parameters calculated by Abraham. Multiple linear regression (MLR) as a linear model and artificial neural network (ANN) methods were used to evaluate the nonlinear behavior of the involved parameters. The prediction results are obtained by nonlinear model, ANN, seem to be superior over MLR and were in good agreement with experimental data. In the proposed ANN-QSMR model, the overall mean percentage deviation values were 5.6, 5.4, and 5.3% and the coefficients of determinations (R-2) were 0.84, 0.84, and 0.84 for training, test, and verification set, respectively. To investigate the robustness of the model, cross-validation methods have been established, i.e., leave-one-out and leave-N-out (N=5 and 10) and model is showed good predictive ability against data variation in cross-validation process. This model is not only able to accurately predict the migration order of a diverse set of organic acids but also model finds that solvation parameters are responsible in separation mechanism. [GRAPHICS]
引用
收藏
页码:967 / 977
页数:11
相关论文